5 resultados para Rheology (Biology)
em Universidad Politécnica de Madrid
Resumo:
BIOLOGY is a dynamic and fascinating science. The study of this subject is an amazing trip for all the students that have a first contact with this subject. Here, we present the development of the study and learning experience of this subject belonging to an area of knowledge that is different to the training curriculum of students who have studied Physics during their degree period. We have taken a real example, the “Elements of Biology” subject, which is taught as part of the Official Biomedical Physics Master, at the Physics Faculty, of the Complutense University of Madrid, since the course 2006/07. Its main objective is to give to the student an understanding how the Physics can have numerous applications in the Biomedical Sciences area, giving the basic training to develop a professional, academic or research career. The results obtained when we use new virtual tools combined with the classical learning show that there is a clear increase in the number of persons that take and pass the final exam. On the other hand, this new learning strategy is well received by the students and this is translated to a higher participation and a decrease of the giving the subject up
Resumo:
How easy is it to reproduce the results found in a typical computational biology paper? Either through experience or intuition the reader will already know that the answer is with difficulty or not at all. In this paper we attempt to quantify this difficulty by reproducing a previously published paper for different classes of users (ranging from users with little expertise to domain experts) and suggest ways in which the situation might be improved. Quantification is achieved by estimating the time required to reproduce each of the steps in the method described in the original paper and make them part of an explicit workflow that reproduces the original results. Reproducing the method took several months of effort, and required using new versions and new software that posed challenges to reconstructing and validating the results. The quantification leads to “reproducibility maps” that reveal that novice researchers would only be able to reproduce a few of the steps in the method, and that only expert researchers with advance knowledge of the domain would be able to reproduce the method in its entirety. The workflow itself is published as an online resource together with supporting software and data. The paper concludes with a brief discussion of the complexities of requiring reproducibility in terms of cost versus benefit, and a desiderata with our observations and guidelines for improving reproducibility. This has implications not only in reproducing the work of others from published papers, but reproducing work from one’s own laboratory.
Resumo:
Astragalus gines-lopezii Talavera, Podlech, Devesa & F.M.Vázquez (Fabaceae) is a threatened endemic species with a distribution restricted to a very small area in Badajoz Province (Extremadura Region, SW Spain) and only 2 populations are known. This species was catalogued in the ?Endangered? category in the 2008 Red List and the 2010 Threatened Spanish Vascular Flora List. Despite its status as an endangered species, at present very little is known about the distribution, census, and reproductive biology of this species. In this study we have carried out an exhaustive census of A. gines-lopezii , and we have evaluated the production of flowers, fruits, and seeds and the existence or not of intra- and interpopulation variability in seed germination. Results have highlighted the high reproductive capacity of this species on the basis of a high production of flowers, fruits, and seeds. Mechanical scarification of seeds was effective for increasing germination. Thus, initial germination (22%?60%) was increased to 97%?99% when seeds were rubbed with sandpapers. A high intra- and interpopulation variability in seed germination was found in this species. A. gines-lopezii produces seeds with different degrees of physical dormancy, varying this grade among different individuals within a population.
Resumo:
El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rápidos de ladera a través del método sin malla Smoothed Particle Hydrodynamics (SPH). Este método tiene la gran ventaja de permitir el análisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de métodos numéricos con mallas tal como el método de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v - pw, que representa el comportamiento, expresado en términos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de partículas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: • la ecuación de balance de masa de la fase del fluido intersticial, • la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, • la ecuación constitutiva y • una ecuación cinemática. Debido a sus propiedades geométricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numéricamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numéricamente deslizamientos rápidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplástico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analítica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, mostrando como los resultados obtenidos simulan con éxito estos tipos de riesgos naturales. The study developed in this thesis focuses on the modelling of landslides propagation with the Smoothed Particle Hydrodynamics (SPH) meshless method which has the great advantage of allowing to deal with large deformation problems by avoiding expensive remeshing operations as happens for mesh methods such as, for example, the Finite Element Method. In this thesis, special attention is given to the role played by rheology and pore water pressure during these natural hazards. The mathematical framework used is based on the v - pw Biot-Zienkiewicz formulation, which represents the behaviour, formulated in terms of soil skeleton velocity and pore water pressure, of the mixture of solid particles and pore water in a saturated media. The governing equations are: • the mass balance equation for the pore water phase, • the momentum balance equation for the pore water phase and the mixture, • the constitutive equation and • a kinematic equation. Landslides, due to their shape and geometrical properties, have small depths in comparison with their length or width, therefore, the mathematical model aforementioned can then be simplified by depth integrating the equations, switching from a 3D to a 2D model, which presents an excellent combination of accuracy, computational costs and simplicity. The proposed model differs from previous depth integrated models by including a sub-model able to provide information on pore water pressure profiles at each computational step of the landslide's propagation. In an effective way, the evolution of the pore water pressure profiles is numerically solved through a set of 1D Finite Differences explicit scheme at each SPH node. This new approach is able to take into account the variation of the pore water pressure due to changes of height, vertical consolidation or changes of total stress. Concerning the constitutive behaviour, one of the main issues when modelling fast landslides is the difficulty to simulate with the same constitutive or rheological model the transition from the triggering phase, where the landslide behaves like a solid, to the propagation phase, where the landslide behaves in a fluid-like manner. In this work thesis, a new rheological model is proposed, based on the Perzyna viscoplastic model, thinking of viscoplasticity as the key to close the gap between the triggering and the propagation phase. In order to validate the mathematical model and the numerical approach, benchmarks and laboratory experiments are reproduced and compared to analytical solutions when possible. Finally, applications to real cases are studied, with particular attention paid to the Aberfan flowslide of 1966, showing how the mathematical model accurately and successfully simulate these kind of natural hazards.
Resumo:
Astragalus gines-lopezii Talavera, Podlech, Devesa & F.M.Vazquez (Fabaceae) is a threatened endemic species with a distribution restricted to a very small area in Badajoz Province (Extremadura Region, SW Spain) and only 2 populations are known.This species was catalogued in the "Endangered" category in the 2008 Red List and the 2010 Threatened Spanish Vascular Flora List. Despite its status as an endangered species, at present very little is known about the distribution, census, and reproductive biology of this species. In this study we have carried out anexhaustive census of A. gines-lopezii, and we have evaluated the production of flowers, fruits, and seeds and the existence or not of intra- and interpopulation variability in seed germination. Results have highlighted the high reproductive capacity of this species on the basis of a high production of flowers, fruits, and seeds. Mechanical scarification of seeds was effective for increasing germination. Thus, initial germination (22%-60%) was increased to 97%-99% when seeds were rubbed with sandpapers. A high intra- and interpopulation variability in seed germination was found in this species. A. gines-lopezii produces seeds with different degrees of physical dormancy, varying this grade among different individuals within a population.