3 resultados para Retard de croissance
em Universidad Politécnica de Madrid
Resumo:
Fastener holes in aeronautical structures are typical sources of fatigue cracks due to their induced local stress concentration. A very efficient solution to this problem is to establish compressive residual stresses around the fastener holes that retard the fatigue crack nucleation and its subsequent local propagation. Previous work done on the subject of the application of LSP treatment on thin, open-hole specimens [1] has proven that the LSP effect on fatigue life of treated specimens can be detrimental, if the process is not properly optimized. In fact, it was shown that the capability of the LSP to introduce compressive residual stresses around fastener holes in thin-walled structures representative of typical aircraft constructions was not superior to the performance of conventional techniques, such as cold-working.
Resumo:
We proposed an optical communications system, based on a digital chaotic signal where the synchronization of chaos was the main objective, in some previous papers. In this paper we will extend this work. A way to add the digital data signal to be transmitted onto the chaotic signal and its correct reception, is the main objective. We report some methods to study the main characteristics of the resulting signal. The main problem with any real system is the presence of some retard between the times than the signal is generated at the emitter at the time when this signal is received. Any system using chaotic signals as a method to encrypt need to have the same characteristics in emitter and receiver. It is because that, this control of time is needed. A method to control, in real time the chaotic signals, is reported.
Resumo:
Laser Shock Processing (LSP) has been demonstrated as an emerging technique for the induction of RS’s fields in subsurface layers of relatively thick specimens. However, the LSP treatment of relatively thin specimens brings, as an additional consequence, the possible bending in a process of laser shock forming. This effect poses a new class of problems regarding the attainment of specified RS’s depth profiles in the mentioned type of sheets, and, what can be more critical, an overall deformation of the treated component. The analysis of the problem of LSP treatment for induction of tentatively through-thickness RS’s fields for fatigue life enhancement in relatively thin sheets in a way compatible with reduced overall workpiece deformation due to spring-back self-equilibration is envisaged in this paper. The coupled theoretical-experimental predictive approach developed by the authors has been applied to the specification of LSP treatments for achievement of RS's fields tentatively able to retard crack propagation on normalized specimens. A convergence between numerical code results and experimental results coming from direct RS's measurement is presented as a first step for the treatment of the normalized specimens under optimized conditions and verification of the crack retardation properties virtually induced.