4 resultados para Response surfaces
em Universidad Politécnica de Madrid
Resumo:
Impact response surfaces (IRSs) depict the response of an impact variable to changes in two explanatory variables as a plotted surface. Here, IRSs of spring and winter wheat yields were constructed from a 25-member ensemble of process-based crop simulation models. Twenty-one models were calibrated by different groups using a common set of calibration data, with calibrations applied independently to the same models in three cases. The sensitivity of modelled yield to changes in temperature and precipitation was tested by systematically modifying values of 1981-2010 baseline weather data to span the range of 19 changes projected for the late 21st century at three locations in Europe.
Resumo:
This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.
Resumo:
This paper introduces a new approach for predicting people displacement by means of movementsurfaces. These surfaces can allow the simulation of a person?s movement through the use of semanticmovement concepts such as those making up the environment, the people who are moving, eventsthat describe a human activity, and time of occurrences. In order to represent this movement we havetransformed the trajectory of a person or group of persons into a raindrop path over a surface. As araindrop flows over a surface looking for the maximum slopes, people flow over the landscapelooking for the maximum utility. The movement surfaces are the response to a chained succession of events describing the way a person moves from one destination to another passing through the mostaffine trajectory to his interest. The three construction phases of this modelling approach (exploration,reasoning and prediction) are presented in this paper. The model was implemented in Protégé and aJava application was developed to generate the movement surface based on a recreational scenario.The results had shown the opportunity to apply our approach to optimise the accessibility of recreational areas according to the preferences of the users of that location.
Resumo:
A comparative study on alignment performance and microstructure of inorganic layers used for liquid crystal cell conditioning has been carried out. The study has focused on two specific materials, SiOx and SiO2, deposited under different conditions. The purpose was to establish a relationship between layer microstructure and liquid crystal alignment. The surface morphology has been studied by FESEM and AFM. An analysis on liquid crystal alignment, pretilt angle, response time, contrast ratio and the conditions to develop backflow effect (significant rise time increase due to pure homeotropic alignment) on vertically-aligned nematic cells has been carried out. A technique to overcome the presence of backflow has been identified. The full comparative study of SiOx and SiO2 layer properties and their influence over liquid crystal alignment and electrooptic response is presented.