11 resultados para Resonances, Orbital

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex-rotated hyperspherical adiabatic method is used to study the decay of lowlying 9Be and 9B resonances into α, α and n or p. We consider six low-lying resonances of 9Be (1/2±, 3/2± and 5/2±) and one resonance of 9B (5/2−) to compare with. The properties of the resonances at large distances are decisive for the momentum distributions of the three decaying fragments. Systematic detailed energy correlations of Dalitz plots are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase of orbital debris and the consequent proliferation of smaller objects through fragmentation are driving the need for mitigation strategies. The issue is how to deorbit the satellite with an efficient system that does not impair drastically the propellant budget of the satellite and, consequently, reduces its operating life. We have been investigating, in the framework of a European-Community-funded project, a passive system that makes use of an electrodynamics tether to deorbit a satellite through Lorentz forces. The deorbiting system will be carried by the satellite itself at launch and deployed from the satellite at the end of its life. From that moment onward the system operates passively without requiring any intervention from the satellite itself. The paper summarizes the results of the analysis carried out to show the deorbiting performance of the system starting from different orbital altitudes and inclinations for a reference satellite mass. Results can be easily scaled to other satellite masses. The results have been obtained by using a high-fidelity computer model that uses the latest environmental routines for magnetic field, ionospheric density, atmospheric density and a gravity field model. The tether dynamics is modelled by considering all the main aspects of a real system as the tether flexibility and its temperature-dependent electrical conductivity. Temperature variations are computed by including all the major external and internal input fluxes and the thermal flux emitted from the tether. The results shows that a relatively compact and light system can carry out the complete deorbit of a relatively large satellite in a time ranging from a month to less than a year starting from high LEO with the best performance occurring at low orbital inclinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymptotic analysis of electron collection at high bias Fp serves to determine the domain of validity of the orbital-motion-limited regime of cylindrical Langmuir probes, which is basic for the workings of conductive bare tethers. The radius of a wire collecting OML current in an unmagnetized plasma at rest cannot exceed a value, Rmax , which is found to exhibit a minimum as a function of Fp ; atFp values of interest, Rmax is already increasing and is larger than the electron Debye length lDe . The breakdown of the regime relates to conditions far fromthe probe, at electron energies comparable to the ion thermal energy, kTi ; Rmax is found to increase with Ti . It is also found that ~1! the maximumwidth of a thin tape, if used instead of a wire, is 4Rmax ; ~2! the electron thermal gyroradius must be larger than both R and lDe for magnetic effects to be negligible; and ~3! conditions applying to the tether case are such that trapped-orbit effects are negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current I to a cylindrical probe at rest in an unmagnetized plasma, with probe bias highly positive, is determined. The way I lags behind the orbital-motion-limited OMLcurrent, 1 OML R, as the radius R exceeds the maximum radius for the OML regime to hold, is of interest for space-tether applications. The ratio I/I OML is roughly a decreasing function of R/lD R max /lDe , which is independent of bias, with lDe the electron Debye length and Rmax /l De roughly an increasing function of the temperature ratio, Ti /Te. The dependence of current on ion energy is used to discuss the effect of probe motion through the plasma, a case applying to tethers in low orbit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrodynamic tether system for power generation at Jupiter is presented that allows extracting energy from Jupiter's corotating plasmasphere while leaving the system orbital energy unaltered to first order. The spacecraft is placed in a polar orbit with the tether spinning in the orbital plane so that the resulting Lorentz force, neglecting Jupiter's magnetic dipole tilt, is orthogonal to the instantaneous velocity vector and orbital radius, hence affecting orbital inclination rather than orbital energy. In addition, the electrodynamic tether subsystem, which consists of two radial tether arms deployed from the main central spacecraft, is designed in such a way as to extract maximum power while keeping the resulting Lorentz torque constantly null. The power-generation performance of the system and the effect on the orbit inclination is evaluated analytically for different orbital conditions and verified numerically. Finally, a thruster-based inclination-compensation maneuver at apoapsis is added, resulting in an efficient scheme to extract energy from the plasmasphere of the planet with minimum propellant consumption and no inclination change. A tradeoff analysis is conducted showing that, depending on tether size and orbit characteristics, the system performance can be considerably higher than conventional power-generation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low earth orbit (LEO) environment contains a large number of artificial debris, of which a significant portion is due to dead satellites and fragments of satellites resulted from explosions and in-orbit collisions. Deorbiting defunct satellites at the end of their life can be achieved by a successful operation of an Electrodynamic Tether (EDT) system. The effectiveness of an EDT greatly depends on the survivability of the tether, which can become debris itself if cut by debris particles; a tether can be completely cut by debris having some minimal diameter. The objective of this paper is to develop an accurate model using power laws for debris-size ranges, in both ORDEM2000 and MASTER2009 debris flux models, to calculate tape tether survivability. The analytical model, which depends on tape dimensions (width, thickness) and orbital parameters (inclinations, altitudes) is then verified with fully numerical results to compare for different orbit inclinations, altitudes and tape width for both ORDEM2000 and MASTER2009 flux data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bead models are used in dynamical simulation of tethers. These models discretize a cable using beads distributed along its length. The time evolution is obtained nu- merically. Typically the number of particles ranges between 5 and 50, depending on the required accuracy. Sometimes the simulation is extended over long periods (several years). The complex interactions between the cable and its spatial environment require to optimize the propagators —both in runtime and precisión that constitute the central core of the process. The special perturbation method treated on this article conjugates simpleness of computer implementation, speediness and precision, and is capable to propagate the orbit of whichever material particle. The paper describes the evolution of some orbital elements, which are constants in a non-perturbed problem, but which evolve in the time scale imposed by the perturbation. It can be used with any kind of orbit and it is free of sin- gularities related to small inclination and/or small eccentricity. The use of Euler parameters makes it robust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper mathematical expressions for minimum-volume stability limits and resonance frequencies of axisymmetric long liquid bridges are presented. These expressions are valid for a wide range of liquid bridge configurations, accounting for ef-fects like unequal disks and axial microgravity in the case of minimum-volume stability limits,and unequal disks, axial microgravity,non-zero viscosity and liquid bridge volume different from the cylindrical one in the case of resonance frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Una amarra electrodinámica (electrodynamic tether) opera sobre principios electromagnéticos intercambiando momento con la magnetosfera planetaria e interactuando con su ionosfera. Es un subsistema pasivo fiable para desorbitar etapas de cohetes agotadas y satélites al final de su misión, mitigando el crecimiento de la basura espacial. Una amarra sin aislamiento captura electrones del plasma ambiente a lo largo de su segmento polarizado positivamente, el cual puede alcanzar varios kilómetros de longitud, mientras que emite electrones de vuelta al plasma mediante un contactor de plasma activo de baja impedancia en su extremo catódico, tal como un cátodo hueco (hollow cathode). En ausencia de un contactor catódico activo, la corriente que circula por una amarra desnuda en órbita es nula en ambos extremos de la amarra y se dice que ésta está flotando eléctricamente. Para emisión termoiónica despreciable y captura de corriente en condiciones limitadas por movimiento orbital (orbital-motion-limited, OML), el cociente entre las longitudes de los segmentos anódico y catódico es muy pequeño debido a la disparidad de masas entre iones y electrones. Tal modo de operación resulta en una corriente media y fuerza de Lorentz bajas en la amarra, la cual es poco eficiente como dispositivo para desorbitar. El electride C12A7 : e−, que podría presentar una función de trabajo (work function) tan baja como W = 0.6 eV y un comportamiento estable a temperaturas relativamente altas, ha sido propuesto como recubrimiento para amarras desnudas. La emisión termoiónica a lo largo de un segmento así recubierto y bajo el calentamiento de la operación espacial, puede ser más eficiente que la captura iónica. En el modo más simple de fuerza de frenado, podría eliminar la necesidad de un contactor catódico activo y su correspondientes requisitos de alimentación de gas y subsistema de potencia, lo que resultaría en un sistema real de amarra “sin combustible”. Con este recubrimiento de bajo W, cada segmento elemental del segmento catódico de una amarra desnuda de kilómetros de longitud emitiría corriente como si fuese parte de una sonda cilíndrica, caliente y uniformemente polarizada al potencial local de la amarra. La operación es similar a la de una sonda de Langmuir 2D tanto en los segmentos catódico como anódico. Sin embargo, en presencia de emisión, los electrones emitidos resultan en carga espacial (space charge) negativa, la cual reduce el campo eléctrico que los acelera hacia fuera, o incluso puede desacelerarlos y hacerlos volver a la sonda. Se forma una doble vainas (double sheath) estable con electrones emitidos desde la sonda e iones provenientes del plasma ambiente. La densidad de corriente termoiónica, variando a lo largo del segmento catódico, podría seguir dos leyes distintas bajo diferentes condiciones: (i) la ley de corriente limitada por la carga espacial (space-charge-limited, SCL) o (ii) la ley de Richardson-Dushman (RDS). Se presenta un estudio preliminar sobre la corriente SCL frente a una sonda emisora usando la teoría de vainas (sheath) formada por la captura iónica en condiciones OML, y la corriente electrónica SCL entre los electrodos cilíndricos según Langmuir. El modelo, que incluye efectos óhmicos y el efecto de transición de emisión SCL a emisión RDS, proporciona los perfiles de corriente y potencial a lo largo de la longitud completa de la amarra. El análisis muestra que en el modo más simple de fuerza de frenado, bajo condiciones orbitales y de amarras típicas, la emisión termoiónica proporciona un contacto catódico eficiente y resulta en una sección catódica pequeña. En el análisis anterior, tanto la transición de emisión SCL a RD como la propia ley de emisión SCL consiste en un modelo muy simplificado. Por ello, a continuación se ha estudiado con detalle la solución de vaina estacionaria de una sonda con emisión termoiónica polarizada negativamente respecto a un plasma isotrópico, no colisional y sin campo magnético. La existencia de posibles partículas atrapadas ha sido ignorada y el estudio incluye tanto un estudio semi-analítico mediante técnica asintóticas como soluciones numéricas completas del problema. Bajo las tres condiciones (i) alto potencial, (ii) R = Rmax para la validez de la captura iónica OML, y (iii) potencial monotónico, se desarrolla un análisis asintótico auto-consistente para la estructura de plasma compleja que contiene las tres especies de cargas (electrones e iones del plasma, electrones emitidos), y cuatro regiones espaciales distintas, utilizando teorías de movimiento orbital y modelos cinéticos de las especies. Aunque los electrones emitidos presentan carga espacial despreciable muy lejos de la sonda, su efecto no se puede despreciar en el análisis global de la estructura de la vaina y de dos capas finas entre la vaina y la región cuasi-neutra. El análisis proporciona las condiciones paramétricas para que la corriente sea SCL. También muestra que la emisión termoiónica aumenta el radio máximo de la sonda para operar dentro del régimen OML y que la emisión de electrones es mucho más eficiente que la captura iónica para el segmento catódico de la amarra. En el código numérico, los movimientos orbitales de las tres especies son modelados para potenciales tanto monotónico como no-monotónico, y sonda de radio R arbitrario (dentro o más allá del régimen de OML para la captura iónica). Aprovechando la existencia de dos invariante, el sistema de ecuaciones Poisson-Vlasov se escribe como una ecuación integro-diferencial, la cual se discretiza mediante un método de diferencias finitas. El sistema de ecuaciones algebraicas no lineal resultante se ha resuelto de con un método Newton-Raphson paralelizado. Los resultados, comparados satisfactoriamente con el análisis analítico, proporcionan la emisión de corriente y la estructura del plasma y del potencial electrostático. ABSTRACT An electrodynamic tether operates on electromagnetic principles and exchanges momentum through the planetary magnetosphere, by continuously interacting with the ionosphere. It is a reliable passive subsystem to deorbit spent rocket stages and satellites at its end of mission, mitigating the growth of orbital debris. A tether left bare of insulation collects electrons by its own uninsulated and positively biased segment with kilometer range, while electrons are emitted by a low-impedance active device at the cathodic end, such as a hollow cathode, to emit the full electron current. In the absence of an active cathodic device, the current flowing along an orbiting bare tether vanishes at both ends and the tether is said to be electrically floating. For negligible thermionic emission and orbital-motion-limited (OML) collection throughout the entire tether (electron/ion collection at anodic/cathodic segment, respectively), the anodic-to-cathodic length ratio is very small due to ions being much heavier, which results in low average current and Lorentz drag. The electride C12A7 : e−, which might present a possible work function as low as W = 0.6 eV and moderately high temperature stability, has been proposed as coating for floating bare tethers. Thermionic emission along a thus coated cathodic segment, under heating in space operation, can be more efficient than ion collection and, in the simplest drag mode, may eliminate the need for an active cathodic device and its corresponding gas-feed requirements and power subsystem, which would result in a truly “propellant-less” tether system. With this low-W coating, each elemental segment on the cathodic segment of a kilometers-long floating bare-tether would emit current as if it were part of a hot cylindrical probe uniformly polarized at the local tether bias, under 2D probe conditions that are also applied to the anodic-segment analysis. In the presence of emission, emitted electrons result in negative space charge, which decreases the electric field that accelerates them outwards, or even reverses it, decelerating electrons near the emitting probe. A double sheath would be established with electrons being emitted from the probe and ions coming from the ambient plasma. The thermionic current density, varying along the cathodic segment, might follow two distinct laws under different con ditions: i) space-charge-limited (SCL) emission or ii) full Richardson-Dushman (RDS) emission. A preliminary study on the SCL current in front of an emissive probe is presented using the orbital-motion-limited (OML) ion-collection sheath and Langmuir’s SCL electron current between cylindrical electrodes. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects considered and the transition from SCL to full RDS emission is included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission provides efficient cathodic contact and leads to a short cathodic section. In the previous analysis, both the transition between SCL and RDS emission and the current law for SCL condition have used a very simple model. To continue, considering an isotropic, unmagnetized, colissionless plasma and a stationary sheath, the probe-plasma contact is studied in detail for a negatively biased probe with thermionic emission. The possible trapped particles are ignored and this study includes both semianalytical solutions using asymptotic analysis and complete numerical solutions. Under conditions of i) high bias, ii) R = Rmax for ion OML collection validity, and iii) monotonic potential, a self-consistent asymptotic analysis is carried out for the complex plasma structure involving all three charge species (plasma electrons and ions, and emitted electrons) and four distinct spatial regions using orbital motion theories and kinetic modeling of the species. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between the sheath and the quasineutral region. The parametric conditions for the current to be space-chargelimited are obtained. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers. In the numerical code, the orbital motions of all three species are modeled for both monotonic and non-monotonic potential, and for any probe radius R (within or beyond OML regime for ion collection). Taking advantage of two constants of motion (energy and angular momentum), the Poisson-Vlasov equation is described by an integro differential equation, which is discretized using finite difference method. The non-linear algebraic equations are solved using a parallel implementation of the Newton-Raphson method. The results, which show good agreement with the analytical results, provide the results for thermionic current, the sheath structure, and the electrostatic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a thin coating of low-work-function material, thermionic emission in the cathodic segment of bare tethers might be much greater than orbital-motion-limited (OML) ion collection current. The space charge of the emitted electrons decreases the electric field that accelerates them outwards, and could even reverse it for high enough emission, producing a potential hollow. In this work, at the conditions of high bias and relatively low emission that make the potential monotonic, an asymptotic analysis is carried out, extending the OML ion-collection analysis to investigate the probe response due to electrons emitted by the negatively biased cylindrical probe. At given emission, the space charge effect from emitted electrons increases with decreasing magnitude of negative probe bias. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between sheath and the quasineutral region. The space-charge-limited condition is located. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers.