9 resultados para Resiliência - Resilience
em Universidad Politécnica de Madrid
Resumo:
The modelling of critical infrastructures (CIs) is an important issue that needs to be properly addressed, for several reasons. It is a basic support for making decisions about operation and risk reduction. It might help in understanding high-level states at the system-of-systems layer, which are not ready evident to the organisations that manage the lower level technical systems. Moreover, it is also indispensable for setting a common reference between operator and authorities, for agreeing on the incident scenarios that might affect those infrastructures. So far, critical infrastructures have been modelled ad-hoc, on the basis of knowledge and practice derived from less complex systems. As there is no theoretical framework, most of these efforts proceed without clear guides and goals and using informally defined schemas based mostly on boxes and arrows. Different CIs (electricity grid, telecommunications networks, emergency support, etc) have been modelled using particular schemas that were not directly translatable from one CI to another. If there is a desire to build a science of CIs it is because there are some observable commonalities that different CIs share. Up until now, however, those commonalities were not adequately compiled or categorized, so building models of CIs that are rooted on such commonalities was not possible. This report explores the issue of which elements underlie every CI and how those elements can be used to develop a modelling language that will enable CI modelling and, subsequently, analysis of CI interactions, with a special focus on resilience
Resumo:
Systems of Systems (SoS) present challenging features and existing tools result often inadequate for their analysis, especially for heteregeneous networked infrastructures. Most accident scenarios in networked systems cannot be addressed by a simplistic black or white (i.e. functioning or failed) approach. Slow deviations from nominal operation conditions may cause degraded behaviours that suddenly end up into unexpected malfunctioning, with large portions of the network affected. In this paper,we present a language for modelling networked SoS. The language makes it possible to represent interdependencies of various natures, e.g. technical, organizational and human. The representation of interdependencies is based on control relationships that exchange physical quantities and related information. The language also makes it possible the identification of accident scenarios, by representing the propagation of failure events throughout the network. The results can be used for assessing the effectiveness of those mechanisms and measures that contribute to the overall resilience, both in qualitative and quantitative terms. The presented modelling methodology is general enough to be applied in combination with already existing system analysis techniques, such as risk assessment, dependability and performance evaluation
Resumo:
Critical infrastructures support everyday activities in modern societies, facilitating the exchange of services and quantities of various nature. Their functioning is the result of the integration of diverse technologies, systems and organizations into a complex network of interconnections. Benefits from networking are accompanied by new threats and risks. In particular, because of the increased interdependency, disturbances and failures may propagate and render unstable the whole infrastructure network. This paper presents a methodology of resilience analysis of networked systems of systems. Resilience generalizes the concept of stability of a system around a state of equilibrium, with respect to a disturbance and its ability of preventing, resisting and recovery. The methodology provides a tool for the analysis of off-equilibrium conditions that may occur in a single system and propagate through the network of dependencies. The analysis is conducted in two stages. The first stage of the analysis is qualitative. It identifies the resilience scenarios, i.e. the sequence of events, triggered by an initial disturbance, which include failures and the system response. The second stage is quantitative. The most critical scenarios can be simulated, for the desired parameter settings, in order to check if they are successfully handled, i.e recovered to nominal conditions, or they end into the network failure. The proposed methodology aims at providing an effective support to resilience-informed design.
Resumo:
La informática se está convirtiendo en la quinta utilidad (gas, agua, luz, teléfono) en parte debido al impacto de Cloud Computing en las mayorías de las organizaciones. Este uso de informática es usada por cada vez más tipos de sistemas, incluidos Sistemas Críticos. Esto tiene un impacto en la complejidad internad y la fiabilidad de los sistemas de la organización y los que se ofrecen a los clientes. Este trabajo investiga el uso de Cloud Computing por sistemas críticos, centrándose en las dependencias y especialmente en la fiabilidad de estos sistemas. Se han presentado algunos ejemplos de su uso, y aunque su utilización en sistemas críticos no está extendido, se presenta cual puede llegar a ser su impacto. El objetivo de este trabajo es primero definir un modelo que pueda representar de una forma cuantitativa las interdependencias en fiabilidad y interdependencia para las organizaciones que utilicen estos sistemas, y aplicar este modelo en un sistema crítico del campo de sanidad y mostrar sus resultados. Los conceptos de “macro-dependability” y “micro-dependability” son introducidos en el modelo para la definición de interdependencia y para analizar la fiabilidad de sistemas que dependen de otros sistemas. ABSTRACT With the increasing utilization of Internet services and cloud computing by most organizations (both private and public), it is clear that computing is becoming the 5th utility (along with water, electricity, telephony and gas). These technologies are used for almost all types of systems, and the number is increasing, including Critical Infrastructure systems. Even if Critical Infrastructure systems appear not to rely directly on cloud services, there may be hidden inter-dependencies. This is true even for private cloud computing, which seems more secure and reliable. The critical systems can began in some cases with a clear and simple design, but evolved as described by Egan to "rafted" networks. Because they are usually controlled by one or few organizations, even when they are complex systems, their dependencies can be understood. The organization oversees and manages changes. These CI systems have been affected by the introduction of new ICT models like global communications, PCs and the Internet. Even virtualization took more time to be adopted by Critical systems, due to their strategic nature, but once that these technologies have been proven in other areas, at the end they are adopted as well, for different reasons such as costs. A new technology model is happening now based on some previous technologies (virtualization, distributing and utility computing, web and software services) that are offered in new ways and is called cloud computing. The organizations are migrating more services to the cloud; this will have impact in their internal complexity and in the reliability of the systems they are offering to the organization itself and their clients. Not always this added complexity and associated risks to their reliability are seen. As well, when two or more CI systems are interacting, the risks of one can affect the rest, sharing the risks. This work investigates the use of cloud computing by critical systems, and is focused in the dependencies and reliability of these systems. Some examples are presented together with the associated risks. A framework is introduced for analysing the dependability and resilience of a system that relies on cloud services and how to improve them. As part of the framework, the concepts of micro and macro dependability are introduced to explain the internal and external dependability on services supplied by an external cloud. A pharmacovigilance model system has been used for framework validation.
Resumo:
Agricultural water management needs to evolve in view of increased water scarcity, especially when farming and natural protected areas are closely linked. In the study site of Don?ana (southern Spain), water is shared by rice producers and a world heritage biodiversity ecosystem. Our aim is to contribute to defining adaptation strategies that may build resilience to increasing water scarcity and minimize water conflicts among agricultural and natural systems. The analytical framework links a participatory process with quantitative methods to prioritize the adaptation options. Bottom-up proposed adaptation measures are evaluated by a multi-criteria analysis (MCA) that includes both socioeconomic criteria and criteria of the ecosystem services affected by the adaptation options. Criteria weights are estimated by three different methods?analytic hierarchy process, Likert scale and equal weights?that are then compared. Finally, scores from an MCA are input into an optimization model used to determine the optimal land-use distribution in order to maximize utility and land-use diversification according to different scenarios of funds and water availability. While our results show a spectrum of perceptions of priorities among stakeholders, there is one overriding theme that is to define a way to restore part of the rice fields to natural wetlands. These results hold true under the current climate scenario and evenmore so under an increased water scarcity scenario.
Resumo:
This paper shows the importance of a holistic comprehension of the Earth as a living planet, where man inhabits and is exposed to environmental incidences of different nature. The aim of the paper here summarized is a reflection on all these concepts and scientific considerations related to the important role of men in the handling of natural hazards. Our Planet is an unstable and dynamical system highly sensitive to initial conditions, as proposed by Chaos theory (González-Miranda 2004); it is a complex organic whole, which responds to minimal variations which can affect several natural phenomena such as plate tectonics, solar flares, fluid turbulences, landscape formation, forest fires, growth and migration of populations and biological evolution. This is known as the “butterfly effect” (Lorenz 1972), which means that a small change of the system causes a chain of events leading to large-scale unpredictable consequences. The aim of this work is dwelling on the importance of the knowledge of these natural and catastrophic geological, biological and human systems so much sensible to equilibrium conditions, to prevent, avoid and mend their effects, and to face them in a resilient way
Resumo:
Dentro del campo de la ciudad como lugar se analiza el concepto de planificación territorial y planeamiento espacial. Flooding is one of the main risks associated to many urban settlements in Spain and, indeed, elsewhere. The location of cities has traditionally ignored this type of risk as other locational criteria prevailed (communications, crop yields, etc.). Defence engineering has been the customary way to offset the risk but, nowadays, the opportunity costs of engineering works in urban areas has highlighted the interest of “soft measures” based on prevention. Early warning systems plus development planning controls rank among the most favoured ones. This paper reflects the results of a recent EU-financed research project on alternative measures geared to the enhancement of urban resilience against flooding. A city study in Spain is used as example of those measures.
Resumo:
El auge del "Internet de las Cosas" (IoT, "Internet of Things") y sus tecnologías asociadas han permitido su aplicación en diversos dominios de la aplicación, entre los que se encuentran la monitorización de ecosistemas forestales, la gestión de catástrofes y emergencias, la domótica, la automatización industrial, los servicios para ciudades inteligentes, la eficiencia energética de edificios, la detección de intrusos, la gestión de desastres y emergencias o la monitorización de señales corporales, entre muchas otras. La desventaja de una red IoT es que una vez desplegada, ésta queda desatendida, es decir queda sujeta, entre otras cosas, a condiciones climáticas cambiantes y expuestas a catástrofes naturales, fallos de software o hardware, o ataques maliciosos de terceros, por lo que se puede considerar que dichas redes son propensas a fallos. El principal requisito de los nodos constituyentes de una red IoT es que estos deben ser capaces de seguir funcionando a pesar de sufrir errores en el propio sistema. La capacidad de la red para recuperarse ante fallos internos y externos inesperados es lo que se conoce actualmente como "Resiliencia" de la red. Por tanto, a la hora de diseñar y desplegar aplicaciones o servicios para IoT, se espera que la red sea tolerante a fallos, que sea auto-configurable, auto-adaptable, auto-optimizable con respecto a nuevas condiciones que puedan aparecer durante su ejecución. Esto lleva al análisis de un problema fundamental en el estudio de las redes IoT, el problema de la "Conectividad". Se dice que una red está conectada si todo par de nodos en la red son capaces de encontrar al menos un camino de comunicación entre ambos. Sin embargo, la red puede desconectarse debido a varias razones, como que se agote la batería, que un nodo sea destruido, etc. Por tanto, se hace necesario gestionar la resiliencia de la red con el objeto de mantener la conectividad entre sus nodos, de tal manera que cada nodo IoT sea capaz de proveer servicios continuos, a otros nodos, a otras redes o, a otros servicios y aplicaciones. En este contexto, el objetivo principal de esta tesis doctoral se centra en el estudio del problema de conectividad IoT, más concretamente en el desarrollo de modelos para el análisis y gestión de la Resiliencia, llevado a la práctica a través de las redes WSN, con el fin de mejorar la capacidad la tolerancia a fallos de los nodos que componen la red. Este reto se aborda teniendo en cuenta dos enfoques distintos, por una parte, a diferencia de otro tipo de redes de dispositivos convencionales, los nodos en una red IoT son propensos a perder la conexión, debido a que se despliegan en entornos aislados, o en entornos con condiciones extremas; por otra parte, los nodos suelen ser recursos con bajas capacidades en términos de procesamiento, almacenamiento y batería, entre otros, por lo que requiere que el diseño de la gestión de su resiliencia sea ligero, distribuido y energéticamente eficiente. En este sentido, esta tesis desarrolla técnicas auto-adaptativas que permiten a una red IoT, desde la perspectiva del control de su topología, ser resiliente ante fallos en sus nodos. Para ello, se utilizan técnicas basadas en lógica difusa y técnicas de control proporcional, integral y derivativa (PID - "proportional-integral-derivative"), con el objeto de mejorar la conectividad de la red, teniendo en cuenta que el consumo de energía debe preservarse tanto como sea posible. De igual manera, se ha tenido en cuenta que el algoritmo de control debe ser distribuido debido a que, en general, los enfoques centralizados no suelen ser factibles a despliegues a gran escala. El presente trabajo de tesis implica varios retos que conciernen a la conectividad de red, entre los que se incluyen: la creación y el análisis de modelos matemáticos que describan la red, una propuesta de sistema de control auto-adaptativo en respuesta a fallos en los nodos, la optimización de los parámetros del sistema de control, la validación mediante una implementación siguiendo un enfoque de ingeniería del software y finalmente la evaluación en una aplicación real. Atendiendo a los retos anteriormente mencionados, el presente trabajo justifica, mediante una análisis matemático, la relación existente entre el "grado de un nodo" (definido como el número de nodos en la vecindad del nodo en cuestión) y la conectividad de la red, y prueba la eficacia de varios tipos de controladores que permiten ajustar la potencia de trasmisión de los nodos de red en respuesta a eventuales fallos, teniendo en cuenta el consumo de energía como parte de los objetivos de control. Así mismo, este trabajo realiza una evaluación y comparación con otros algoritmos representativos; en donde se demuestra que el enfoque desarrollado es más tolerante a fallos aleatorios en los nodos de la red, así como en su eficiencia energética. Adicionalmente, el uso de algoritmos bioinspirados ha permitido la optimización de los parámetros de control de redes dinámicas de gran tamaño. Con respecto a la implementación en un sistema real, se han integrado las propuestas de esta tesis en un modelo de programación OSGi ("Open Services Gateway Initiative") con el objeto de crear un middleware auto-adaptativo que mejore la gestión de la resiliencia, especialmente la reconfiguración en tiempo de ejecución de componentes software cuando se ha producido un fallo. Como conclusión, los resultados de esta tesis doctoral contribuyen a la investigación teórica y, a la aplicación práctica del control resiliente de la topología en redes distribuidas de gran tamaño. Los diseños y algoritmos presentados pueden ser vistos como una prueba novedosa de algunas técnicas para la próxima era de IoT. A continuación, se enuncian de forma resumida las principales contribuciones de esta tesis: (1) Se han analizado matemáticamente propiedades relacionadas con la conectividad de la red. Se estudia, por ejemplo, cómo varía la probabilidad de conexión de la red al modificar el alcance de comunicación de los nodos, así como cuál es el mínimo número de nodos que hay que añadir al sistema desconectado para su re-conexión. (2) Se han propuesto sistemas de control basados en lógica difusa para alcanzar el grado de los nodos deseado, manteniendo la conectividad completa de la red. Se han evaluado diferentes tipos de controladores basados en lógica difusa mediante simulaciones, y los resultados se han comparado con otros algoritmos representativos. (3) Se ha investigado más a fondo, dando un enfoque más simple y aplicable, el sistema de control de doble bucle, y sus parámetros de control se han optimizado empleando algoritmos heurísticos como el método de la entropía cruzada (CE, "Cross Entropy"), la optimización por enjambre de partículas (PSO, "Particle Swarm Optimization"), y la evolución diferencial (DE, "Differential Evolution"). (4) Se han evaluado mediante simulación, la mayoría de los diseños aquí presentados; además, parte de los trabajos se han implementado y validado en una aplicación real combinando técnicas de software auto-adaptativo, como por ejemplo las de una arquitectura orientada a servicios (SOA, "Service-Oriented Architecture"). ABSTRACT The advent of the Internet of Things (IoT) enables a tremendous number of applications, such as forest monitoring, disaster management, home automation, factory automation, smart city, etc. However, various kinds of unexpected disturbances may cause node failure in the IoT, for example battery depletion, software/hardware malfunction issues and malicious attacks. So, it can be considered that the IoT is prone to failure. The ability of the network to recover from unexpected internal and external failures is known as "resilience" of the network. Resilience usually serves as an important non-functional requirement when designing IoT, which can further be broken down into "self-*" properties, such as self-adaptive, self-healing, self-configuring, self-optimization, etc. One of the consequences that node failure brings to the IoT is that some nodes may be disconnected from others, such that they are not capable of providing continuous services for other nodes, networks, and applications. In this sense, the main objective of this dissertation focuses on the IoT connectivity problem. A network is regarded as connected if any pair of different nodes can communicate with each other either directly or via a limited number of intermediate nodes. More specifically, this thesis focuses on the development of models for analysis and management of resilience, implemented through the Wireless Sensor Networks (WSNs), which is a challenging task. On the one hand, unlike other conventional network devices, nodes in the IoT are more likely to be disconnected from each other due to their deployment in a hostile or isolated environment. On the other hand, nodes are resource-constrained in terms of limited processing capability, storage and battery capacity, which requires that the design of the resilience management for IoT has to be lightweight, distributed and energy-efficient. In this context, the thesis presents self-adaptive techniques for IoT, with the aim of making the IoT resilient against node failures from the network topology control point of view. The fuzzy-logic and proportional-integral-derivative (PID) control techniques are leveraged to improve the network connectivity of the IoT in response to node failures, meanwhile taking into consideration that energy consumption must be preserved as much as possible. The control algorithm itself is designed to be distributed, because the centralized approaches are usually not feasible in large scale IoT deployments. The thesis involves various aspects concerning network connectivity, including: creation and analysis of mathematical models describing the network, proposing self-adaptive control systems in response to node failures, control system parameter optimization, implementation using the software engineering approach, and evaluation in a real application. This thesis also justifies the relations between the "node degree" (the number of neighbor(s) of a node) and network connectivity through mathematic analysis, and proves the effectiveness of various types of controllers that can adjust power transmission of the IoT nodes in response to node failures. The controllers also take into consideration the energy consumption as part of the control goals. The evaluation is performed and comparison is made with other representative algorithms. The simulation results show that the proposals in this thesis can tolerate more random node failures and save more energy when compared with those representative algorithms. Additionally, the simulations demonstrate that the use of the bio-inspired algorithms allows optimizing the parameters of the controller. With respect to the implementation in a real system, the programming model called OSGi (Open Service Gateway Initiative) is integrated with the proposals in order to create a self-adaptive middleware, especially reconfiguring the software components at runtime when failures occur. The outcomes of this thesis contribute to theoretic research and practical applications of resilient topology control for large and distributed networks. The presented controller designs and optimization algorithms can be viewed as novel trials of the control and optimization techniques for the coming era of the IoT. The contributions of this thesis can be summarized as follows: (1) Mathematically, the fault-tolerant probability of a large-scale stochastic network is analyzed. It is studied how the probability of network connectivity depends on the communication range of the nodes, and what is the minimum number of neighbors to be added for network re-connection. (2) A fuzzy-logic control system is proposed, which obtains the desired node degree and in turn maintains the network connectivity when it is subject to node failures. There are different types of fuzzy-logic controllers evaluated by simulations, and the results demonstrate the improvement of fault-tolerant capability as compared to some other representative algorithms. (3) A simpler but more applicable approach, the two-loop control system is further investigated, and its control parameters are optimized by using some heuristic algorithms such as Cross Entropy (CE), Particle Swarm Optimization (PSO), and Differential Evolution (DE). (4) Most of the designs are evaluated by means of simulations, but part of the proposals are implemented and tested in a real-world application by combining the self-adaptive software technique and the control algorithms which are presented in this thesis.
Resumo:
Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions – central Chile, southwestern US, and south-central Spain – where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.