44 resultados para Renewable energy sources.
em Universidad Politécnica de Madrid
Resumo:
The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with expected shortages. Many of its current policies and strategies are aimed at the improvement and possible maximization of energy production from the renewable sector. It is also clear that while energy-conservation and energy-efficiency can make an important contribution in the national energy strategy, renewable energies will be essential to the solution and are likely to play an increasingly important role for the growth of grid power, providing energy access, reducing consumption of fossil fuels, and helping India pursue its low carbon progressive pathway. However, most of the states in India, like the northernmost State of Jammu and Kashmir (J&K), have experienced an energy crisis over a sustained period of time. As India intends to be one of the emerging powers of the 21st century, it has to embark upon with these pressing issues in a more sustainable manner and accordingly initiate various renewable energy projects within these states. This paper will provide a broad-spectrum view about the energy situation within J&K and will highlight the current policies along with future strategies for the optimal utilization of renewable energy resources.
Resumo:
The European energy sector is undergoing a major transformation and is facing a series of difficult challenges. These include a high and increasing dependence on external energy resources; dramatically reduce the need for the emissions of greenhouse gases to meet environmental objectives and the difficulties related to the promotion of energy market effectively integrated and competitive. Some of the policies associated with the various objectives are sometimes in conflict with each other, while in other cases are mutually reinforcing.The aim of this paper is to do a scienti?c analysis of the developments so far and the expectations for the coming period focusing on the pillars of energy policy in the EU in terms of security of supply, environment, climate change and promoting a competitive and integrated market. The use of renewable energy sources is seen as a key element of European energy policy and should help to: reduce dependence on fuel from non-member countries; reduce emissions from carbon-based energy sources, and; decouple energy costs from oil prices.
Resumo:
The change towards a sustainable economic system represents a big challenge for the present as well as next generations. Such a process requires important long-term changes in technologies, lifestyle, infrastructures and institutions. In this scenario the innovation process is a crucial element for fostering sustainability as well as an egalitarian development in developing countries. For those reasons the concept of Eco-Innovation System is introduced and further considerations are provided for the case of less-developed countries. The paper illustrates that sustainable development is possible by exploiting local potential and traditional knowledge in order to achieve at the same time economic growth, social equality and environmental sustainability. In order to prove such an assumption a specific case study is described: The renewable energy sector in Bolivia. The case study summarizes many important dimensions of the innovation process in developing countries such as technological transfer, diffusion and adaptation, social dimension and development issues.
Resumo:
This paper explores the water-energy nexus of Spain and offers calculations for both the energy used in the water sector and the water required to run the energy sector. The article takes a prospective approach, offering evaluations of policy objectives for biofuels and expected renewable energy sources. Approximately 5.8% of total electricity demand in Spain is due to the water sector. Irrigated agriculture is one of the Spanish water sectors that show the largest growth in energy requirements. Searches for more efficient modes of farm water use, urban waste water treatment, and the use of desalinated water must henceforth include the energy component. Furthermore, biofuel production, to the levels targeted for 2020, would have an unbearable impact on the already stressed water resources in Spain. However, growing usage of renewable energy sources is not threatened by water scarcity, but legislative measures in water allocation and water markets will be required to meet the requirements of using these sources. Some of these measures, which are pushed by regional governments, are discussed in concluding sections.
Resumo:
This paper examines the implications of strategic rigidness for technology adoption behaviours among electric utilities. Such behaviours lead to heterogeneity in firm performance and consequently affect the electric utility industry. The paper's central aim is to identify and describe the implications of strategic rigidness for a utility firm's decision making in adopting newer renewable energy technologies. The findings indicate that not all utility firms are keen to adopt these new technologies, as these firms have traditionally been operating efficiently with a more conventional and mature technological arrangement that has become embedded in the organisational routine. Case studies of Iberdrola S.A. and Enel S.p.A. as major electric utilities are detailed to document mergers and acquisitions and technology adoption decisions. The results indicate that technology adoption behaviours vary widely across utility firms with different organisational learning processes and core capabilities.
Resumo:
The future economic growth for India is likely to result in rapid and accelerated surge in energy demand, with expected shortages in terms of supply. Many of its current policies and strategies are aimed at the improvement and possible maximization of energy production from the renewable sector. It is also clear that while energy conservation and energy efficiency can make an important contribution, renewable energies will be essential to the solution and are likely to play an increasingly important role for providing enhanced energy access, reducing consumption of fossil fuels, and helping India pursue its low-carbon progressive pathway. However, most of the states in India, like the northernmost state of Jammu and Kashmir, have experienced an energy crisis over a sustained period of time and the government both at center and state level has to embark upon with these pressing issues in a more sustainable manner and accordingly initiate various renewable energy projects within these states. This paper will provide a broad-spectrum view about the energy situation within Jammu and Kashmir and will highlight the current policies along with future strategies for the optimal utilization of renewable energy resources.
Resumo:
The relevance of renewable energy has grown significantly in our global society. Important efforts are oriented to sustain it. Renewable energy depends on different technical, financial environmental and social complex processes. From the point of view of industrial construction sector this research evaluates some of the current trends in energy generation and use in Venezuela as well as environmental consequences and risks that derive from these. Additionally, authors highlight the importance of infrastructure as key issue to sustain renewable energy generation and use. The study present references of some energy renewable projects in process in Venezuela and the main problems that constrain their performance. Conclusions evidence the complex nature of industrial construction and suggest the need to improve industrial construction competitivenes as a strategy oriented to enhance renewable energy offer in the country. Additionally it is proposed to all stakeholders to work toghether to correct the conditions that currently limit industrial construction development. This is part of ongoing research.
Resumo:
The recognition of the relevance of energy, especially of the renewable energies generated by the sun, water, wind, tides, modern biomass or thermal is growing significantly in the global society based on the possibility it has to improve societies′ quality of life, to support poverty reduction and sustainable development. Renewable energy, and mainly the energy generated by large hydropower generation projects that supply most of the renewable energy consumed by developing countries, requires many technical, legal, financial and social complex processes sustained by innovations and valuable knowledge. Besides these efforts, renewable energy requires a solid infrastructure to generate and distribute the energy resources needed to solve the basic needs of society. This demands a proper construction performance to deliver the energy projects planned according to specifications and respecting environmental and social concerns, which implies the observance of sustainable construction guidelines. But construction projects are complex and demanding and frequently face time and cost overruns that may cause negative impacts on the initial planning and thus on society. The renewable energy issue and the large renewable energy power generation and distribution projects are particularly significant for developing countries and for Latin America in particular, as this region concentrates an important hydropower potential and installed capacity. Using as references the performance of Venezuelan large hydropower generation projects and the Guri dam construction, this research evaluates the tight relationship existing between sustainable construction and knowledge management and their impact to achieve sustainability goals. The knowledge management processes are proposed as a basic strategy to allow learning from successes and failures obtained in previous projects and transform the enhancement opportunites into actions to improve the performance of the renewable energy power generation and distribution projects.
Analysis of Renewable Energy Policies Related to Repowering the Wind Energy Sector: the Spanish Case
Resumo:
In countries that started early with wind energy, the old wind turbines were located in places where the wind is often very good. Since the best places in which the wind is concerned are occupied by old wind turbines (with lower capacity than the more recent ones) the trend is to start replacing old turbines with new ones. With repowering, the first generation of wind turbines can be replaced by modern multi-megawatt wind turbines. The aim of this article is to analyze energy policies in the Spanish energy sector in the repowering of wind farms from the viewpoint of the current situation of the wind energy sector. The approach presented in this article is meant to explain what have been the policies related to the repowering sector making a brief analysis of the spectrum of different stimulii that are demanded by the market analyzing also the future perspectives of the repowering sector by establishing the new opportunities based on the new published regulations.
Resumo:
Electricity price forecasting is an interesting problem for all the agents involved in electricity market operation. For instance, every profit maximisation strategy is based on the computation of accurate one-day-ahead forecasts, which is why electricity price forecasting has been a growing field of research in recent years. In addition, the increasing concern about environmental issues has led to a high penetration of renewable energies, particularly wind. In some European countries such as Spain, Germany and Denmark, renewable energy is having a deep impact on the local power markets. In this paper, we propose an optimal model from the perspective of forecasting accuracy, and it consists of a combination of several univariate and multivariate time series methods that account for the amount of energy produced with clean energies, particularly wind and hydro, which are the most relevant renewable energy sources in the Iberian Market. This market is used to illustrate the proposed methodology, as it is one of those markets in which wind power production is more relevant in terms of its percentage of the total demand, but of course our method can be applied to any other liberalised power market. As far as our contribution is concerned, first, the methodology proposed by García-Martos et al(2007 and 2012) is generalised twofold: we allow the incorporation of wind power production and hydro reservoirs, and we do not impose the restriction of using the same model for 24h. A computational experiment and a Design of Experiments (DOE) are performed for this purpose. Then, for those hours in which there are two or more models without statistically significant differences in terms of their forecasting accuracy, a combination of forecasts is proposed by weighting the best models(according to the DOE) and minimising the Mean Absolute Percentage Error (MAPE). The MAPE is the most popular accuracy metric for comparing electricity price forecasting models. We construct the combi nation of forecasts by solving several nonlinear optimisation problems that allow computation of the optimal weights for building the combination of forecasts. The results are obtained by a large computational experiment that entails calculating out-of-sample forecasts for every hour in every day in the period from January 2007 to Decem ber 2009. In addition, to reinforce the value of our methodology, we compare our results with those that appear in recent published works in the field. This comparison shows the superiority of our methodology in terms of forecasting accuracy.
Resumo:
The need of new systems for the storage and conversion of renewable energy sources is fueling the research in supercapacitors. In this work, we propose a low temperature route for the synthesis of electrodes for these supercapacitors: electrodeposition of a transition metal hydroxide–Ni(OH)2 on a graphene foam. This electrode combines the superior mechanical and electrical properties of graphene, the large specific surface area of the foam and the large pseudocapacitance of Ni(OH)2. We report a specific capacitance up to 900 F/g as well as specific power and energy comparable to active carbon electrodes. These electrodes are potential candidates for their use in energy applications.
Resumo:
Technology transfer (TT) in the area of renewable energy (RE) throughout history has been an important tool for rural development (RD). Initially, the TT has been conceptualized as the purchase or donation of machinery from first world countries - without any consideration of staff training and contextual conditions for the adaptation of technology to the needs of the country. Various researches have revealed the existence of different approaches to planning the TT of RE, demonstrating the high complexity of projects from the social and contextual dimension. This paper addresses the conceptual evolution of the TT of RE for RD, examining its different periods considered for three criteria: historical events occurred, the role of stakeholders and changing objectives for the TT of RE for RD. For the conceptual analysis of changes the model Working With People (WWP) is used for planning and project management of high social complexity in RD. The analysis defines the existence of four historical periods in the TT of RE and synthesizes the lessons of experience from the three dimensions (ethical-social, technical-entrepreneurial, and political-contextual) of the WWP model.
Resumo:
Esta Tesis surgió ante la intensidad y verosimilitud de varias señales o “warnings” asociadas a políticas dirigidas a reducir el peso del petróleo en el sector energético, tanto por razones económicas, como geopolíticas, como ambientales. Como tal Tesis se consolidó al ir incorporando elementos novedosos pero esenciales en el mundo petrolífero, particularmente las “tecnologías habilitantes”, tanto de incidencia directa, como el “fracking” como indirecta, del cual es un gran ejemplo el Vehículo Eléctrico (puro). La Tesis se definió y estructuró para elaborar una serie de indagaciones y disquisiciones, que comportaran un conjunto de conclusiones que fueran útiles para las corporaciones energéticas. También para la comprensión de la propia evolución del sector y de sus prestaciones técnicas y económicas, de cara a dar el servicio que los usuarios finales piden. Dentro de las tareas analíticas y reflexivas de la Tesis, se acuñaron ciertos términos conceptuales para explicar más certeramente la realidad del sector, y tal es el caso del “Investment burden”, que pondera la inversión específica (€/W) requerida por una instalación, con la duración del período de construcción y los riesgos tanto tangibles como regulatorios. Junto a ello la Tesis propone una herramienta de estudio y prognosis, denominada “Market integrated energy efficiency”, especialmente aplicable a dicotomías. Tal es el caso del coche térmico, versus coche eléctrico. El objetivo es optimizar una determinada actividad energética, o la productividad total del sector. Esta Tesis propone varias innovaciones, que se pueden agrupar en dos niveles: el primero dentro del campo de la Energía, y el segundo dentro del campo de las corporaciones, y de manera especial de las corporaciones del sector hidrocarburos. A nivel corporativo, la adaptación a la nueva realidad será función directa de la capacidad de cada corporación para desarrollar y/o comprar las tecnologías que permitan mantener o aumentar cuota de mercado. Las conclusiones de la Tesis apuntan a tres opciones principalmente para un replanteamiento corporativo: - Diversificación energética - Desplazamiento geográfico - Beneficiándose de posibles nuevos nichos tecnológicos, como son: • En upstream: Recuperación estimulada de petróleo mediante uso de energías renovables • En downstream: Aditivos orientados a reducir emisiones • En gestión del cambio: Almacenamiento energético con fines operativos Algunas políticas energéticas siguen la tendencia de crecimiento cero de algunos países de la OCDE. No obstante, la realidad mundial es muy diferente a la de esos países. Por ejemplo, según diversas estimaciones (basadas en bancos de datos solventes, referenciados en la Tesis) el número de vehículos aumentará desde aproximadamente mil millones en la actualidad hasta el doble en 2035; mientras que la producción de petróleo sólo aumentará de 95 a 145 millones de barriles al día. Un aumento del 50% frente a un aumento del 100%. Esto generará un curioso desajuste, que se empezará a sentir en unos pocos años. Las empresas y corporaciones del sector hidrocarburos pueden perder el monopolio que atesoran actualmente en el sector transporte frente a todas las demás fuentes energéticas. Esa pérdida puede quedar compensada por una mejor gestión de todas sus capacidades y una participación más integrada en el mundo de la energía, buscando sinergias donde hasta ahora no había sino distanciamiento. Los productos petrolíferos pueden alimentar cualquier tipo de maquina térmica, como las turbinas Brayton, o alimentar reformadores para la producción masiva de H2 para su posterior uso en pilas combustible. El almacenamiento de productos derivados del petróleo no es ningún reto ni plantea problema alguno; y sin embargo este almacenamiento es la llave para resolver muchos problemas. Es posible que el comercio de petróleo se haga menos volátil debido a los efectos asociados al almacenamiento; pero lo que es seguro es que la eficiencia energética de los usos de ese petróleo será más elevada. La Tesis partía de ciertas amenazas sobre el futuro del petróleo, pero tras el análisis realizado se puede vislumbrar un futuro prometedor en la fusión de políticas medioambientales coercitivas y las nuevas tecnologías emergentes del actual portafolio de oportunidades técnicas. ABSTRACT This Thesis rises from the force and the credibility of a number of warning signs linked to policies aimed at reducing the role of petroleum in the energy industry due to economical, geopolitical and environmental drives. As such Thesis, it grew up based on aggregating new but essentials elements into the petroleum sector. This is the case of “enabling technologies” that have a direct impact on the petroleum industry (such as fracking), or an indirect but deep impact (such as the full electrical vehicle). The Thesis was defined and structured in such a way that could convey useful conclusions for energy corporations through a series of inquiries and treatises. In addition to this, the Thesis also aims at understating la evolution of the energy industry and its capabilities both technical and economical, towards delivering the services required by end users. Within the analytical task performed in the Thesis, new terms were coined. They depict concepts that aid at explaining the facts of the energy industry. This is the case for “Investment burden”, it weights the specific capital investment (€/W) required to build a facility with the time that takes to build it, as well as other tangible risks as those posed by regulation. In addition to this, the Thesis puts forward an application designed for reviewing and predicting: the so called “Market integrated energy efficiency”, especially well-suited for dichotomies, very appealing for the case of the thermal car versus the electric car. The aim is to optimize energy related activity; or even the overall productivity of the system. The innovations proposed in this Thesis can be classified in two tiers. Tier one, within the energy sector; and tier two, related to Energy Corporation in general, but with oil and gas corporations at heart. From a corporate level, the adaptation to new energy era will be linked with the corporation capability to develop or acquire those technologies that will yield to retaining or enhancing market share. The Thesis highlights three options for corporate evolution: - diversification within Energy - geographic displacement - profiting new technologies relevant to important niches of work for the future, as: o Upstream: enhanced oil recovery using renewable energy sources (for upstream companies in the petroleum business) o Downstream: additives for reducing combustion emissions o Management of Change: operational energy storage Some energy policies tend to follow the zero-growth of some OECD countries, but the real thing could be very different. For instance, and according to estimates the number of vehicles in use will grow from 1 billion to more than double this figure 2035; but oil production will only grow from 95 million barrel/day to 145 (a 50% rise of versus an intensification of over a 100%). Hydrocarbon Corporation can lose the monopoly they currently hold over the supply of energy to transportation. This lose can be mitigated through an enhanced used of their capabilities and a higher degree of integration in the world of energy, exploring for synergies in those places were gaps were present. Petroleum products can be used to feed any type of thermal machine, as Brayton turbines, or steam reformers to produce H2 to be exploited in fuel cells. Storing petroleum products does not present any problem, but very many problems can be solved with them. Petroleum trading will likely be less volatile because of the smoothing effects of distributed storage, and indeed the efficiency in petroleum consumption will be much higher. The Thesis kicked off with a menace on the future of petroleum. However, at the end of the analysis, a bright future can be foreseen in the merging between highly demanding environmental policies and the relevant technologies of the currently emerging technical portfolio.
Resumo:
Feed-in-tariff (FIT) schemes have been widely employed to promote renewable energy deployment. While FITs may be perceived by consumers as an extra cost, renewable energies cause a noticeable price reduction in wholesale electricity markets. We analyse both effects for the case of the Spanish electricity market during 2010. In particular, we examine the level of FITs that makes savings and extra costs to be similar on an hourly basis. Results are obtained for a wide range of renewable generation scenarios. It is found that FITs with null extra costs for consumers are in the range of 50–80 €/MWh. Some of the side-effects of a high penetration of renewable energy in the market are analysed in detail and discussed.
Resumo:
Crop irrigation is a major consumer of energy. Only a few countries are self-sufficient in conventional non-renewable energy sources. Fortunately, there are renewable ones, such as wind, which has experienced recent developments in the area of power generation. Wind pumps can play a vital role in irrigation projects in remote farms. A methodology based on daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. For this purpose, several factors were included: three-hourly wind velocity (W3 h, m/s), flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration as a function of crop planting date. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. An example is given illustrating the use of this methodology on tomato crop (Lycopersicon esculentum Mill.) under greenhouse at Ciego de Ávila, Cuba. In this case two different W3 h series (average and low wind year), three different H values and five tomato crop planting dates were considered. The results show that the optimum period of wind-pump driven irrigation is with crop plating in November, recommending a 5 m3 volume tank for cultivated areas around 0.2 ha when using wind pumps operating at 15 m of height elevation.