7 resultados para Remotely-sensed Data
em Universidad Politécnica de Madrid
Resumo:
La mayoría de las aplicaciones forestales del escaneo laser aerotransportado (ALS, del inglés airborne laser scanning) requieren la integración y uso simultaneo de diversas fuentes de datos, con el propósito de conseguir diversos objetivos. Los proyectos basados en sensores remotos normalmente consisten en aumentar la escala de estudio progresivamente a lo largo de varias fases de fusión de datos: desde la información más detallada obtenida sobre un área limitada (la parcela de campo), hasta una respuesta general de la cubierta forestal detectada a distancia de forma más incierta pero cubriendo un área mucho más amplia (la extensión cubierta por el vuelo o el satélite). Todas las fuentes de datos necesitan en ultimo termino basarse en las tecnologías de sistemas de navegación global por satélite (GNSS, del inglés global navigation satellite systems), las cuales son especialmente erróneas al operar por debajo del dosel forestal. Otras etapas adicionales de procesamiento, como la ortorectificación, también pueden verse afectadas por la presencia de vegetación, deteriorando la exactitud de las coordenadas de referencia de las imágenes ópticas. Todos estos errores introducen ruido en los modelos, ya que los predictores se desplazan de la posición real donde se sitúa su variable respuesta. El grado por el que las estimaciones forestales se ven afectadas depende de la dispersión espacial de las variables involucradas, y también de la escala utilizada en cada caso. Esta tesis revisa las fuentes de error posicional que pueden afectar a los diversos datos de entrada involucrados en un proyecto de inventario forestal basado en teledetección ALS, y como las propiedades del dosel forestal en sí afecta a su magnitud, aconsejando en consecuencia métodos para su reducción. También se incluye una discusión sobre las formas más apropiadas de medir exactitud y precisión en cada caso, y como los errores de posicionamiento de hecho afectan a la calidad de las estimaciones, con vistas a una planificación eficiente de la adquisición de los datos. La optimización final en el posicionamiento GNSS y de la radiometría del sensor óptico permitió detectar la importancia de este ultimo en la predicción de la desidad relativa de un bosque monoespecífico de Pinus sylvestris L. ABSTRACT Most forestry applications of airborne laser scanning (ALS) require the integration and simultaneous use of various data sources, pursuing a variety of different objectives. Projects based on remotely-sensed data generally consist in upscaling data fusion stages: from the most detailed information obtained for a limited area (field plot) to a more uncertain forest response sensed over a larger extent (airborne and satellite swath). All data sources ultimately rely on global navigation satellite systems (GNSS), which are especially error-prone when operating under forest canopies. Other additional processing stages, such as orthorectification, may as well be affected by vegetation, hence deteriorating the accuracy of optical imagery’s reference coordinates. These errors introduce noise to the models, as predictors displace from their corresponding response. The degree to which forest estimations are affected depends on the spatial dispersion of the variables involved and the scale used. This thesis reviews the sources of positioning errors which may affect the different inputs involved in an ALS-assisted forest inventory project, and how the properties of the forest canopy itself affects their magnitude, advising on methods for diminishing them. It is also discussed how accuracy should be assessed, and how positioning errors actually affect forest estimation, toward a cost-efficient planning for data acquisition. The final optimization in positioning the GNSS and optical image allowed to detect the importance of the latter in predicting relative density in a monospecific Pinus sylvestris L. forest.
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
Unattended Wireless Sensor Networks (UWSNs) operate in autonomous or disconnected mode: sensed data is collected periodically by an itinerant sink. Between successive sink visits, sensor-collected data is subject to some unique vulnerabilities. In particular, while the network is unattended, a mobile adversary (capable of subverting up to a fraction of sensors at a time) can migrate between compromised sets of sensors and inject fraudulent data. In this paper, we provide two collaborative authentication techniques that allow an UWSN to maintain integrity and authenticity of sensor data-in the presence of a mobile adversary-until the next sink visit. Proposed schemes use simple, standard, and inexpensive symmetric cryptographic primitives, coupled with key evolution and few message exchanges. We study their security and effectiveness, both analytically and via simulations. We also assess their robustness and show how to achieve the desired trade-off between performance and security.
Resumo:
This work is motivated in providing and evaluating a fusion algorithm of remotely sensed images, i.e. the fusion of a high spatial resolution panchromatic image with a multi-spectral image (also known as pansharpening) using the dual-tree complex wavelet transform (DT-CWT), an effective approach for conducting an analytic and oversampled wavelet transform to reduce aliasing, and in turn reduce shift dependence of the wavelet transform. The proposed scheme includes the definition of a model to establish how information will be extracted from the PAN band and how that information will be injected into the MS bands with low spatial resolution. The approach was applied to Spot 5 images where there are bands falling outside PAN’s spectrum. We propose an optional step in the quality evaluation protocol, which is to study the quality of the merger by regions, where each region represents a specific feature of the image. The results show that DT-CWT based approach offers good spatial quality while retaining the spectral information of original images, case SPOT 5. The additional step facilitates the identification of the most affected regions by the fusion process.
Resumo:
Collaborative hardening and hardware redundancy are nowadays the most interesting solutions in terms of fault tolerance achieved and low extra cost imposed to the project budget. Thanks to the powerful and cheap digital devices that are available in the market, extra processing capabilities can be used for redundant tasks, not only in early data processing (sensed data) but also in routing and interfacing1
Resumo:
La Gestión Forestal Sostenible se define como “la administración y uso de los bosques y tierras forestales de forma e intensidad tales que mantengan su biodiversidad, productividad, capacidad de regeneración, vitalidad y su potencial para atender, ahora y en el futuro, las funciones ecológicas, económicas y sociales relevantes a escala local, nacional y global, y que no causan daño a otros ecosistemas” (MCPFE Conference, 1993). Dentro del proceso los procesos de planificación, en cualquier escala, es necesario establecer cuál será la situación a la que se quiere llegar mediante la gestión. Igualmente, será necesario conocer la situación actual, pues marcará la situación de partida y condicionará el tipo de actuaciones a realizar para alcanzar los objetivos fijados. Dado que, los Proyectos de Ordenación de Montes y sus respectivas revisiones son herramientas de planificación, durante la redacción de los mismos, será necesario establecer una serie de objetivos cuya consecución pueda verificarse de forma objetiva y disponer de una caracterización de la masa forestal que permita conocer la situación de partida. Esta tesis se centra en problemas prácticos, propios de una escala de planificación local o de Proyecto de Ordenación de Montes. El primer objetivo de la tesis es determinar distribuciones diamétricas y de alturas de referencia para masas regulares por bosquetes, empleando para ello el modelo conceptual propuesto por García-Abril et al., (1999) y datos procedentes de las Tablas de producción de Rojo y Montero (1996). Las distribuciones de referencia obtenidas permitirán guiar la gestión de masas irregulares y regulares por bosquetes. Ambos tipos de masas aparecen como una alternativa deseable en aquellos casos en los que se quiere potenciar la biodiversidad, la estabilidad, la multifuncionalidad del bosque y/o como alternativa productiva, especialmente indicada para la producción de madera de calidad. El segundo objetivo de la Tesis está relacionado con la necesidad de disponer de una caracterización adecuada de la masa forestal durante la redacción de los Proyectos de Ordenación de Montes y de sus respectivas revisiones. Con el fin de obtener estimaciones de variables forestales en distintas unidades territoriales de potencial interés para la Ordenación de Montes, así como medidas de la incertidumbre en asociada dichas estimaciones, se extienden ciertos resultados de la literatura de Estimación en Áreas Pequeñas. Mediante un caso de estudio, se demuestra el potencial de aplicación de estas técnicas en inventario forestales asistidos con información auxiliar procedente de sensores láser aerotransportados (ALS). Los casos de estudio se realizan empleando datos ALS similares a los recopilados en el marco del Plan Nacional de Ortofotografía Aérea (PNOA). Los resultados obtenidos muestran que es posible aumentar la eficiencia de los inventarios forestales tradicionales a escala de proyecto de Ordenación de Montes, mediante la aplicación de estimadores EBLUP (Empirical Best Linear Unbiased Predictor) con modelos a nivel de elemento poblacional e información auxiliar ALS similar a la recopilada por el PNOA. ABSTRACT According to MCPFE (1993) Sustainable Forest Management is “the stewardship and use of forests and forest lands in a way, and at a rate, that maintains their biodiversity, productivity, regeneration capacity, vitality and their potential to fulfill, now and in the future, relevant ecological, economic and social functions, at local, national, and global levels, and that does not cause damage to other ecosystems”. For forest management planning, at any scale, we must determine what situation is hoped to be achieved through management. It is also necessary to know the current situation, as this will mark the starting point and condition the type of actions to be performed in order to meet the desired objectives. Forest management at a local scale is no exception. This Thesis focuses on typical problems of forest management planning at a local scale. The first objective of this Thesis is to determine management objectives for group shelterwood management systems in terms of tree height and tree diameter reference distributions. For this purpose, the conceptual model proposed by García-Abril et al., (1999) is applied to the yield tables for Pinus sylvestris in Sierra de Guadrrama (Rojo y Montero, 1996). The resulting reference distributions will act as a guide in the management of forests treated under the group shelterwood management systems or as an approximated reference for the management of uneven aged forests. Both types of management systems are desirable in those cases where forest biodiversity, stability and multifunctionality are pursued goals. These management systems are also recommended as alternatives for the production of high quality wood. The second objective focuses on the need to adequately characterize the forest during the decision process that leads to local management. In order to obtain estimates of forest variables for different management units of potential interest for forest planning, as well as the associated measures of uncertainty in these estimates, certain results from Small Area Estimation Literature are extended to accommodate for the need of estimates and reliability measures in very small subpopulations containing a reduced number of pixels. A case study shows the potential of Small Area Estimation (SAE) techniques in forest inventories assisted with remotely sensed auxiliary information. The influence of the laser pulse density in the quality of estimates in different aggregation levels is analyzed. This study considers low laser pulse densities (0.5 returns/m2) similar to, those provided by large-scale Airborne Laser Scanner (ALS) surveys, such as the one conducted by the Spanish National Geographic Institute for about 80% of the Spanish territory. The results obtained show that it is possible to improve the efficiency of traditional forest inventories at local scale using EBLUP (Empirical Best Linear Unbiased Predictor) estimators based on unit level models and low density ALS auxiliary information.
Resumo:
Very high resolution remotely sensed images are an important tool for monitoring fragmented agricultural landscapes, which allows farmers and policy makers to make better decisions regarding management practices. An object-based methodology is proposed for automatic generation of thematic maps of the available classes in the scene, which combines edge-based and superpixel processing for small agricultural parcels. The methodology employs superpixels instead of pixels as minimal processing units, and provides a link between them and meaningful objects (obtained by the edge-based method) in order to facilitate the analysis of parcels. Performance analysis on a scene dominated by agricultural small parcels indicates that the combination of both superpixel and edge-based methods achieves a classification accuracy slightly better than when those methods are performed separately and comparable to the accuracy of traditional object-based analysis, with automatic approach.