41 resultados para Remote Data Acquisition and Storage

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo de este proyecto es diseñar un sistema capaz de controlar la velocidad de rotación de un motor DC en función del valor de temperatura obtenido de un sensor. Para ello se generará con un microcontrolador una señal PWM, cuyo ciclo de trabajo estará en función de la temperatura medida. En lo que respecta a la fase de diseño, hay dos partes claramente diferenciadas, relativas al hardware y al software. En cuanto al diseño del hardware puede hacerse a su vez una división en dos partes. En primer lugar, hubo que diseñar la circuitería necesaria para adaptar los niveles de tensión entregados por el sensor de temperatura a los niveles requeridos por ADC, requerido para digitalizar la información para su posterior procesamiento por parte del microcontrolador. Por tanto hubo que diseñar capaz de corregir el offset y la pendiente de la función tensión-temperatura del sensor, a fin de adaptarlo al rango de tensión requerido por el ADC. Por otro lado, hubo que diseñar el circuito encargado de controlar la velocidad de rotación del motor. Este circuito estará basado en un transistor MOSFET en conmutación, controlado mediante una señal PWM como se mencionó anteriormente. De esta manera, al variar el ciclo de trabajo de la señal PWM, variará de manera proporcional la tensión que cae en el motor, y por tanto su velocidad de rotación. En cuanto al diseño del software, se programó el microcontrolador para que generase una señal PWM en uno de sus pines en función del valor entregado por el ADC, a cuya entrada está conectada la tensión obtenida del circuito creado para adaptar la tensión generada por el sensor. Así mismo, se utiliza el microcontrolador para representar el valor de temperatura obtenido en una pantalla LCD. Para este proyecto se eligió una placa de desarrollo mbed, que incluye el microcontrolador integrado, debido a que facilita la tarea del prototipado. Posteriormente se procedió a la integración de ambas partes, y testeado del sistema para comprobar su correcto funcionamiento. Puesto que el resultado depende de la temperatura medida, fue necesario simular variaciones en ésta, para así comprobar los resultados obtenidos a distintas temperaturas. Para este propósito se empleó una bomba de aire caliente. Una vez comprobado el funcionamiento, como último paso se diseñó la placa de circuito impreso. Como conclusión, se consiguió desarrollar un sistema con un nivel de exactitud y precisión aceptable, en base a las limitaciones del sistema. SUMMARY: It is obvious that day by day people’s daily life depends more on technology and science. Tasks tend to be done automatically, making them simpler and as a result, user life is more comfortable. Every single task that can be controlled has an electronic system behind. In this project, a control system based on a microcontroller was designed for a fan, allowing it to go faster when temperature rises or slowing down as the environment gets colder. For this purpose, a microcontroller was programmed to generate a signal, to control the rotation speed of the fan depending on the data acquired from a temperature sensor. After testing the whole design developed in the laboratory, the next step taken was to build a prototype, which allows future improvements in the system that are discussed in the corresponding section of the thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A basic requirement of the data acquisition systems used in long pulse fusion experiments is the real time physical events detection in signals. Developing such applications is usually a complex task, so it is necessary to develop a set of hardware and software tools that simplify their implementation. This type of applications can be implemented in ITER using fast controllers. ITER is standardizing the architectures to be used for fast controller implementation. Until now the standards chosen are PXIe architectures (based on PCIe) for the hardware and EPICS middleware for the software. This work presents the methodology for implementing data acquisition and pre-processing using FPGA-based DAQ cards and how to integrate these in fast controllers using EPICS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EPICS (Experimental Physics and Industrial Control System) lies in a set of software tools and applications which provide a software infrastructure for building distributed data acquisition and control systems. Currently there is an increase in use of such systems in large Physics experiments like ITER, ESS, and FREIA. In these experiments, advanced data acquisition systems using FPGA-based technology like FlexRIO are more frequently been used. The particular case of ITER (International Thermonuclear Experimental Reactor), the instrumentation and control system is supported by CCS (CODAC Core System), based on RHEL (Red Hat Enterprise Linux) operating system, and by the plant design specifications in which every CCS element is defined either hardware, firmware or software. In this degree final project the methodology proposed in Implementation of Intelligent Data Acquisition Systems for Fusion Experiments using EPICS and FlexRIO Technology Sanz et al. [1] is used. The final objective is to provide a document describing the fulfilled process and the source code of the data acquisition system accomplished. The use of the proposed methodology leads to have two diferent stages. The first one consists of the hardware modelling with graphic design tools like LabVIEWFPGA which later will be implemented in the FlexRIO device. In the next stage the design cycle is completed creating an EPICS controller that manages the device using a generic device support layer named NDS (Nominal Device Support). This layer integrates the data acquisition system developed into CCS (Control, data access and communication Core System) as an EPICS interface to the system. The use of FlexRIO technology drives the use of LabVIEW and LabVIEW FPGA respectively. RESUMEN. EPICS (Experimental Physics and Industrial Control System) es un conjunto de herramientas software utilizadas para el desarrollo e implementación de sistemas de adquisición de datos y control distribuidos. Cada vez es más utilizado para entornos de experimentación física a gran escala como ITER, ESS y FREIA entre otros. En estos experimentos se están empezando a utilizar sistemas de adquisición de datos avanzados que usan tecnología basada en FPGA como FlexRIO. En el caso particular de ITER, el sistema de instrumentación y control adoptado se basa en el uso de la herramienta CCS (CODAC Core System) basado en el sistema operativo RHEL (Red Hat) y en las especificaciones del diseño del sistema de planta, en la cual define todos los elementos integrantes del CCS, tanto software como firmware y hardware. En este proyecto utiliza la metodología propuesta para la implementación de sistemas de adquisición de datos inteligente basada en EPICS y FlexRIO. Se desea generar una serie de ejemplos que cubran dicho ciclo de diseño completo y que serían propuestos como casos de uso de dichas tecnologías. Se proporcionará un documento en el que se describa el trabajo realizado así como el código fuente del sistema de adquisición. La metodología adoptada consta de dos etapas diferenciadas. En la primera de ellas se modela el hardware y se sintetiza en el dispositivo FlexRIO utilizando LabVIEW FPGA. Posteriormente se completa el ciclo de diseño creando un controlador EPICS que maneja cada dispositivo creado utilizando una capa software genérica de manejo de dispositivos que se denomina NDS (Nominal Device Support). Esta capa integra la solución en CCS realizando la interfaz con la capa EPICS del sistema. El uso de la tecnología FlexRIO conlleva el uso del lenguaje de programación y descripción hardware LabVIEW y LabVIEW FPGA respectivamente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las herramientas de configuración basadas en lenguajes de alto nivel como LabVIEW permiten el desarrollo de sistemas de adquisición de datos basados en hardware reconfigurable FPGA muy complejos en un breve periodo de tiempo. La estandarización del ciclo de diseño hardware/software y la utilización de herramientas como EPICS facilita su integración con la plataforma de adquisición y control ITER CODAC CORE SYSTEM (CCS) basada en Linux. En este proyecto se propondrá una metodología que simplificará el ciclo completo de integración de plataformas novedosas, como cRIO, en las que el funcionamiento del hardware de adquisición puede ser modificado por el usuario para que éste se amolde a sus requisitos específicos. El objetivo principal de este proyecto fin de master es realizar la integración de un sistema cRIO NI9159 y diferentes módulos de E/S analógica y digital en EPICS y en CODAC CORE SYSTEM (CCS). Este último consiste en un conjunto de herramientas software que simplifican la integración de los sistemas de instrumentación y control del experimento ITER. Para cumplir el objetivo se realizarán las siguientes tareas: • Desarrollo de un sistema de adquisición de datos basado en FPGA con la plataforma hardware CompactRIO. En esta tarea se realizará la configuración del sistema y la implementación en LabVIEW para FPGA del hardware necesario para comunicarse con los módulos: NI9205, NI9264, NI9401.NI9477, NI9426, NI9425 y NI9476 • Implementación de un driver software utilizando la metodología de AsynDriver para integración del cRIO con EPICS. Esta tarea requiere definir todos los records necesarios que exige EPICS y crear las interfaces adecuadas que permitirán comunicarse con el hardware. • Implementar la descripción del sistema cRIO y del driver EPICS en el sistema de descripción de plantas de ITER llamado SDD. Esto automatiza la creación de las aplicaciones de EPICS que se denominan IOCs. SUMMARY The configuration tools based in high-level programing languages like LabVIEW allows the development of high complex data acquisition systems based on reconfigurable hardware FPGA in a short time period. The standardization of the hardware/software design cycle and the use of tools like EPICS ease the integration with the data acquisition and control platform of ITER, the CODAC Core System based on Linux. In this project a methodology is proposed in order to simplify the full integration cycle of new platforms like CompactRIO (cRIO), in which the data acquisition functionality can be reconfigured by the user to fits its concrete requirements. The main objective of this MSc final project is to develop the integration of a cRIO NI-9159 and its different analog and digital Input/Output modules with EPICS in a CCS. The CCS consists of a set of software tools that simplifies the integration of instrumentation and control systems in the International Thermonuclear Reactor (ITER) experiment. To achieve such goal the following tasks are carried out: • Development of a DAQ system based on FPGA using the cRIO hardware platform. This task comprehends the configuration of the system and the implementation of the mandatory hardware to communicate to the I/O adapter modules NI9205, NI9264, NI9401, NI9477, NI9426, NI9425 y NI9476 using LabVIEW for FPGA. • Implementation of a software driver using the asynDriver methodology to integrate such cRIO system with EPICS. This task requires the definition of the necessary EPICS records and the creation of the appropriate interfaces that allow the communication with the hardware. • Develop the cRIO system’s description and the EPICS driver in the ITER plant description tool named SDD. This development will automate the creation of EPICS applications, called IOCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A small Positron Emission Tomography demonstrator based on LYSO slabs and Silicon Photomultiplier matrices is under construction at the University and INFN of Pisa. In this paper we present the characterization results of the read-out electronics and of the detection system. Two SiPM matrices, composed by 8 × 8 SiPM pixels, 1.5 mm pitch, have been coupled one to one to a LYSO crystals array. Custom Front-End ASICs were used to read the 64 channels of each matrix. Data from each Front-End were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port. Specific tests were carried out on the system in order to assess its performance. Futhermore we have measured some of the most important parameters of the system for PET application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of the ITER Control Breakdown Structure (CBS), Plant System Instrumentation & Control (I&C) defines the hardware and software required to control one or more plant systems [1]. For diagnostics, most of the complex Plant System I&C are to be delivered by ITER Domestic Agencies (DAs). As an example for the DAs, ITER Organization (IO) has developed several use cases for diagnostics Plant System I&C that fully comply with guidelines presented in the Plant Control Design Handbook (PCDH) [2]. One such use case is for neutron diagnostics, specifically the Fission Chamber (FC), which is responsible for delivering time-resolved measurements of neutron source strength and fusion power to aid in assessing the functional performance of ITER [3]. ITER will deploy four Fission Chamber units, each consisting of three individual FC detectors. Two of these detectors contain Uranium 235 for Neutron detection, while a third "dummy" detector will provide gamma and noise detection. The neutron flux from each MFC is measured by the three methods: . Counting Mode: measures the number of individual pulses and their location in the record. Pulse parameters (threshold and width) are user configurable. . Campbelling Mode (Mean Square Voltage): measures the RMS deviation in signal amplitude from its average value. .Current Mode: integrates the signal amplitude over the measurement period

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC [1] (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS [2] (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 [3] and [4] (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution is presented, together with the most relevant results of the tests performed, while focusing in the benefits and limitations of the applied technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are investigating the performances of a data acquisition system for Time of Flight PET, based on LYSO crystal slabs and 64 channels Silicon Photomultipliers matrices (1.2 cm2 of active area each). Measurements have been performed to test the timing capability of the detection system (SiPM matices coupled to a LYSO slab and the read-out electronics) with both test signal and radioactive source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Canopies are complex multilayered structures comprising individual plant crowns exposing a multifaceted surface area to sunlight. Foliage arrangement and properties are the main mediators of canopy functions. The leaves act as light traps whose exposure to sunlight varies with time of the day, date and latitude in a trade-off between photosynthetic light harvesting and excessive or photoinhibitory light avoidance. To date, ecological research based upon leaf sampling has been limited by the available echnology, with which data acquisition becomes labour intensive and time-consuming, given the verwhelming number of leaves involved. 2. In the present study, our goal involved developing a tool capable of easuring a sufficient number of leaves to enable analysis of leaf populations, tree crowns and canopies.We specifically tested whether a cell phone working as a 3Dpointer could yield reliable, repeatable and valid leaf anglemeasurements with a simple gesture. We evaluated the accuracy of this method under controlled conditions, using a 3D digitizer, and we compared performance in the field with the methods commonly used. We presented an equation to estimate the potential proportion of the leaf exposed to direct sunlight (SAL) at any given time and compared the results with those obtained bymeans of a graphicalmethod. 3. We found a strong and highly significant correlation between the graphical methods and the equation presented. The calibration process showed a strong correlation between the results derived from the two methods with amean relative difference below 10%. Themean relative difference in calculation of instantaneous exposure was below 5%. Our device performed equally well in diverse locations, in which we characterized over 700 leaves in a single day. 4. The newmethod, involving the use of a cell phone, ismuchmore effective than the traditionalmethods or digitizers when the goal is to scale up from leaf position to performance of leaf populations, tree crowns or canopies. Our methodology constitutes an affordable and valuable tool within which to frame a wide range of ecological hypotheses and to support canopy modelling approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the data structures and algorithms used in the approach for building domain ontologies from folksonomies and linked data. In this approach we extracts domain terms from folksonomies and enrich them with semantic information from the Linked Open Data cloud. As a result, we obtain a domain ontology that combines the emergent knowledge of social tagging systems with formal knowledge from Ontologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications—it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ‘Activity Monitor’ has been designed and implemented: a personal health-persuasive application that provides feedback on the user’s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user’s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.d

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PART I:Cross-section uncertainties under differentneutron spectra. PART II: Processing uncertainty libraries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ITER CODAC design identifies slow and fast plant system controllers (PSC). The gast OSCs are based on embedded technologies, permit sampling rates greater than 1 KHz, meet stringent real-time requirements, and will be devoted to data acquisition tasks and control purposes. CIEMAT and UPM have implemented a prototype of a fast PSC based on commercial off-the-shelf (COTS) technologies with PXI hardware and software based on EPICS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 72 eggs from a group of 100 white laying hens housed in standard cages were analyzed. Thirty-six eggs were retired when the hens had 44 week of age and the other 36 eggs were retired eight weeks afterwards. Each group of 36 eggs was radomly divided in three groups of 12 eggs. First group was analyzed at once (storage system C); second one was kept during one week in the refrigerator (5ºC) (storage system R), and third group were kept also one week but on ambient temperature (25ºC) (storage system ET). The hen age, egg weight and storage system had not significant (P>0.05) effect on shell thickness. The specific gravity (SG) has a positive relation with shell quality. The egg class and storage system significantly (P<0,05) affected to SG, while no influence of bird age on this variable was observed. The yolk color increased with hen age but storage system had not effect on this variable. The increase of the hen age and the R and AT storage systems significantly (P<0.05) reduced albumen height (H) and the interaction hen age x storage system was significant (P<0.025) for this variable. The reduction of the H due to R and ET storage systems was higher in the eggs from hens with 52 weeks of age than in those from hens with 44 weeks of age. The Haugh units (HU) was significantly (P<0.05) affected by hen age, egg class and storage system. The hen age increase reduced HU and the R and ET eggs had lower HU than C eggs. It is concluded that the bird age and storage system with high temperatures reduced the egg quality.