16 resultados para Relation of Drought to Water-Use in Nebraska
em Universidad Politécnica de Madrid
Resumo:
The annual grass Brachypodium distachyon has been recently recognized as the model plant for functional genomics of temperate grasses, including cereals of economic relevance like wheat and barley. Sixty-two lines of B. distachyon were assessed for response to drought stress and heat tolerance. All these lines, except the reference genotype BD21, derive from specimens collected in 32 distinct locations of the Iberian Peninsula, covering a wide range of geo- climatic conditions. Sixteen lines of Brachypodium hybridum, an allotetraploid closely related to B. distachyon were used as reference of abiotic-stress well-adapted genotypes. Drought tolerance was assessed in a green-house trial. At the rosette-stage, no irrigation was applied to treated plants whereas their replicates at the control were maintained well watered during all the experiment. Thermographic images of treated and control plants were taken after 2 and 3 weeks of drought treatment, when stressed plants showed medium and extreme wilting symptoms. The mean leaf temperature of stressed (LTs) and control (LTc) plants was estimated based upon thermographic records from selected pixels (183 per image) that strictly correspond to leaf tissue. The response to drought was based on the analysis of two parameters: LTs and the thermal difference (TD) between stressed and control plants (LTs – LTc). The response to heat stress was based on LTc. Comparison of the mean values of these parameters showed that: 1) Genotypes better adapted to drought (B. hybridum lines) presented a higher LTs and TD than B. distachyon lines. 2) Under high temperature conditions, watered plants of B. hybridum lines maintained lower LTc than those of B. distachyon. Those results suggest that in these species adaptation to drought is linked to a more efficient stomata regulation: under water stress stomata are closed, increasing foliar temperature but also water use efficiency by reducing transpiration. With high temperature and water availability the results are less definite, but still seems that opening stomata allow plants to increase transpiration and therefore to diminish foliar temperature.
Resumo:
Agricultural water management needs to evolve in view of increased water scarcity, especially when farming and natural protected areas are closely linked. In the study site of Don?ana (southern Spain), water is shared by rice producers and a world heritage biodiversity ecosystem. Our aim is to contribute to defining adaptation strategies that may build resilience to increasing water scarcity and minimize water conflicts among agricultural and natural systems. The analytical framework links a participatory process with quantitative methods to prioritize the adaptation options. Bottom-up proposed adaptation measures are evaluated by a multi-criteria analysis (MCA) that includes both socioeconomic criteria and criteria of the ecosystem services affected by the adaptation options. Criteria weights are estimated by three different methods?analytic hierarchy process, Likert scale and equal weights?that are then compared. Finally, scores from an MCA are input into an optimization model used to determine the optimal land-use distribution in order to maximize utility and land-use diversification according to different scenarios of funds and water availability. While our results show a spectrum of perceptions of priorities among stakeholders, there is one overriding theme that is to define a way to restore part of the rice fields to natural wetlands. These results hold true under the current climate scenario and evenmore so under an increased water scarcity scenario.
Resumo:
There is evidence that the climate changes and that now, the change is influenced and accelerated by the CO2 augmentation in atmosphere due to combustion by humans. Such ?Climate change? is on the policy agenda at the global level, with the aim of understanding and reducing its causes and to mitigate its consequences. In most countries and international organisms UNO (e.g. Rio de Janeiro 1992), OECD, EC, etc . . . the efforts and debates have been directed to know the possible causes, to predict the future evolution of some variable conditioners, and trying to make studies to fight against the effects or to delay the negative evolution of such. The Protocol of Kyoto 1997 set international efforts about CO2 emissions, but it was partial and not followed e.g. by USA and China . . . , and in Durban 2011 the ineffectiveness of humanity on such global real challenges was set as evident. Among all that, the elaboration of a global model was not boarded that can help to choose the best alternative between the feasible ones, to elaborate the strategies and to evaluate the costs, and the authors propose to enter in that frame for study. As in all natural, technological and social changes, the best-prepared countries will have the best bear and the more rapid recover. In all the geographic areas the alternative will not be the same one, but the model must help us to make the appropriated decision. It is essential to know those areas that are more sensitive to the negative effects of climate change, the parameters to take into account for its evaluation, and comprehensive plans to deal with it. The objective of this paper is to elaborate a mathematical model support of decisions, which will allow to develop and to evaluate alternatives of adaptation to the climatic change of different communities in Europe and Latin-America, mainly in especially vulnerable areas to the climatic change, considering in them all the intervening factors. The models will consider criteria of physical type (meteorological, edaphic, water resources), of use of the ground (agriculturist, forest, mining, industrial, urban, tourist, cattle dealer), economic (income, costs, benefits, infrastructures), social (population), politician (implementation, legislation), educative (Educational programs, diffusion) and environmental, at the present moment and the future. The intention is to obtain tools for aiding to get a realistic position for these challenges, which are an important part of the future problems of humanity in next decades.
Resumo:
Climate change is on the policy agenda at the global level, with the aim of understanding and reducing its causes and to mitigate its consequences. In most of the countries and international organisms UNO, OECD, EC, etc … the efforts and debates have been directed to know the possible causes, to predict the future evolution of some variable conditioners, and trying to make studies to fight against the effects or to delay the negative evolution of such. Nevertheless, the elaboration of a global model was not boarded that can help to choose the best alternative between the feasible ones, to elaborate the strategies and to evaluate the costs. As in all natural, technological and social changes, the best-prepared countries will have the best bear and the more rapid recover. In all the geographic areas the alternative will not be the same one, but the model should help us to make the appropriated decision. It is essential to know those areas that are more sensitive to the negative effects of climate change, the parameters to take into account for its evaluation, and comprehensive plans to deal with it. The objective of this paper is to elaborate a mathematical model support of decisions, that will allow to develop and to evaluate alternatives of adaptation to the climatic change of different communities in Europe and Latin-America, mainly, in vulnerable areas to the climatic change, considering in them all the intervening factors. The models will take into consideration criteria of physical type (meteorological, edaphic, water resources), of use of the ground (agriculturist, forest, mining, industrial, urban, tourist, cattle dealer), economic (income, costs, benefits, infrastructures), social (population), politician (implementation, legislation), educative (Educational programs, diffusion), sanitary and environmental, at the present moment and the future.
Resumo:
Crop production has a great contribution to water use and abstraction. Sugar beet is an important crop in irrigated land in Spain and covers 70.000 Ha. Crop and resources management are key factors for a sustainable agriculture. The aim of this work is to mode the sugar beet crop growth and water consumption in order to quantify crop water use and virtual water content in different growing conditions.
Resumo:
A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine−1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine−1 by September 2nd. Pre-dawn leaf water potential (ΨPD) and midday Ψl on August 24th were −0.075 and −0.76 MPa, respectively, with midday Ψl decreasing to −1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m−2 s−1 during the two dry-down periods. Midday measurements of g s and Ψl were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in Ψl, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water use
Resumo:
From the water management perspective, water scarcity is an unacceptable risk of facing water shortages to serve water demands in the near future. Water scarcity may be temporary and related to drought conditions or other accidental situation, or may be permanent and due to deeper causes such as excessive demand growth, lack of infrastructure for water storage or transport, or constraints in water management. Diagnosing the causes of water scarcity in complex water resources systems is a precondition to adopt effective drought risk management actions. In this paper we present four indices which have been developed to evaluate water scarcity. We propose a methodology for interpretation of index values that can lead to conclusions about the reliability and vulnerability of systems to water scarcity, as well as to diagnose their possible causes and to propose solutions. The described methodology was applied to the Ebro river basin, identifying existing and expected problems and possible solutions. System diagnostics, based exclusively on the analysis of index values, were compared with the known reality as perceived by system managers, validating the conclusions in all cases
Resumo:
The economic evaluation of drought impacts is essential in order to define efficient and sustainable management and mitigation strategies. The aim of this study is to evaluate the economic impacts of a drought event on the agricultural sector and measure how they are transmitted from primary production to industrial output and related employment. We fit econometric models to determine the magnitude of the economic loss attributable to water storage. The direct impacts of drought on agricultural productivity are measured through a direct attribution model. Indirect impacts on agricultural employment and the agri-food industry are evaluated through a nested indirect attribution model. The transmission of water scarcity effects from agricultural production to macroeconomic variables is measured through chained elasticities. The models allow for differentiating the impacts deriving from water scarcity from other sources of economic losses. Results show that the importance of drought impacts are less relevant at the macroeconomic level, but are more significant for those activities directly dependent on water abstractions and precipitation. From a management perspective, implications of these findings are important to develop effective mitigation strategies to reduce drought risk exposure.
Resumo:
A study of the assessment of the irrigation water use has been carried out in the Spanish irrigation District “Río Adaja” that has analyzed the water use efficiency and the water productivity indicators for the main crops for three years: 2010-2011, 2011-2012 and 2012-2013. A soil water balance model was applied taking into ccount climatic data for the nearby weather station and soil properties. Crop water requirements were calculated by the FAO Penman- Monteith with the application of the dual crop coefficient and by considering the readily vailable soil water content (RAW) concept. Likewise, productivity was measured by the indexes: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS), the water productivity (WP), the evapotranspiration water productivity (ETWP), and the irrigation water productivity (IWP. The results show that in most crops deficit irrigation was applied (ARIS<1) in the first two years however, the IWP improved. This was higher in 2010-2011 which corresponded to the highest effective precipitation Pe. In general, the IWP (€.m-3) varied amongcrops but crops such as: onion (4.14, 1.98 and 2.77 respectively for the three years), potato (2.79, 1.69 and 1.62 respectively for the three years), carrot (1.37, 1.70 and 1.80 respectively for the three years) and barley (1.21, 1.16 and 0.68 respectively for the three years) showed the higher values. Thus, it is highlighted the y could be included into the cropping pattern which would maximize the famer’s gross income in the irrigation district.
Resumo:
The energetic performance of landfill biogas (LB) and biodigester biogas (BB) from municipal waste was examined in consumption tests. These tests were performed in situ at a gas generation plant associated with a landfill facility in Madrid (Spain) and following the standard UNE-EN 30-2-1 (1999). The jets of a domestic cooker commonly used for natural gas (NG) or liquefied petroleum gas (LPG) were modified to operate with the biogases produced at the facility. The working pressures best suited to the tested gases, i.e., to avoid flashback and flame lift, and to ensure the stability and correct functioning of the flame during combustion, were determined by trial and error. Both biogases returned optimum energetic performance for the transfer of heat to water in a metallic recipient (as required by the above standard) at a supply pressure of 10 mbar. Domestic cookers are normally supplied with NG at a pressure of 20 mbar, at which pressure the energetic performance of G20 reference gas was higher than that of both biogases (52.84% compared to 38.06% and 49.77% respectively). Data concerning these issues involving also unexplored feedstock are required for the correct conversions of domestic cookers in order to avoid risks of serious personal injuries or property damages.
Resumo:
Con 1.300 millones de personas en el mundo sin acceso a la electricidad (la mayoría en entornos rurales de países empobrecidos), la energía solar fotovoltaica constituye una solución viable técnica y económicamente para electrificar las zonas más remotas del planeta donde las redes eléctricas convencionales no llegan. Casi todos los países en el mundo han desarrollado algún tipo de programa de electrificación fotovoltaica rural durante los últimos 40 años, principalmente los países más pobres, donde a través de diferentes modelos de financiación, se han instalado millones de sistemas solares domiciliarios (pequeños sistemas fotovoltaicos para uso doméstico). Durante este largo período, se han ido superando muchas barreras, como la mejora de la calidad de los sistemas fotovoltaicos, la reducción de costes, la optimización del diseño y del dimensionado de los sistemas, la disponibilidad financiera para implantar programas de electrificación rural, etc. Gracias a esto, la electrificación rural descentralizada ha experimentado recientemente un salto de escala caracterizada por la implantación de grandes programas con miles de sistemas solares domiciliarios e integrando largos períodos de mantenimiento. Muchos de estos grandes programas se están llevando a cabo con limitado éxito, ya que generalmente parten de supuestos e hipótesis poco contrastadas con la realidad, comprometiendo así un retorno económico que permita el desarrollo de esta actividad a largo plazo. En este escenario surge un nuevo reto: el de cómo garantizar la sostenibilidad de los grandes programas de electrificación rural fotovoltaica. Se argumenta que la principal causa de esta falta de rentabilidad es el imprevisto alto coste de la fase de operación y mantenimiento. Cuestiones clave tales como la estructura de costes de operación y mantenimiento o la fiabilidad de los componentes del sistema fotovoltaico no están bien caracterizados hoy en día. Esta situación limita la capacidad de diseñar estructuras de mantenimiento capaces de asegurar la sostenibilidad y la rentabilidad del servicio de operación y mantenimiento en estos programas. Esta tesis doctoral tiene como objetivo responder a estas cuestiones. Se ha realizado varios estudios sobre la base de un gran programa de electrificación rural fotovoltaica real llevado a cabo en Marruecos con más de 13.000 sistemas solares domiciliarios instalados. Sobre la base de este programa se ha hecho una evaluación en profundidad de la fiabilidad de los sistemas solares a partir de los datos de mantenimiento recogidos durante 5 años con más de 80.000 inputs. Los resultados han permitido establecer las funciones de fiabilidad de los equipos tal y como se comportan en condiciones reales de operación, las tasas de fallos y los tiempos medios hasta el fallo para los principales componentes del sistema, siendo este el primer caso de divulgación de resultados de este tipo en el campo de la electrificación rural fotovoltaica. Los dos principales componentes del sistema solar domiciliario, la batería y el módulo fotovoltaico, han sido analizados en campo a través de una muestra de 41 sistemas trabajando en condiciones reales pertenecientes al programa solar marroquí. Por un lado se ha estudiado la degradación de la capacidad de las baterías y por otro la degradación de potencia de los módulos fotovoltaicos. En el caso de las baterías, los resultados nos han permitido caracterizar la curva de degradación en capacidad llegando a obtener una propuesta de nueva definición del umbral de vida útil de las baterías en electrificación rural. También sobre la base del programa solar de Marruecos se ha llevado a cabo un estudio de caracterización de los costes reales de operación y mantenimiento a partir de la base de datos de contabilidad del programa registrados durante 5 años. Los resultados del estudio han permitido definir cuáles son costes que más incidencia tienen en el coste global. Se han obtenido los costes unitarios por sistema instalado y se han calculado los montantes de las cuotas de mantenimiento de los usuarios para garantizar la rentabilidad de la operación y mantenimiento. Finalmente, se propone un modelo de optimización matemática para diseñar estructuras de mantenimiento basado en los resultados de los estudios anteriores. La herramienta, elaborada mediante programación lineal entera mixta, se ha aplicado al programa marroquí con el fin de validar el modelo propuesto. ABSTRACT With 1,300 million people worldwide deprived of access to electricity (mostly in rural environments), photovoltaic solar energy has proven to be a cost‐effective solution and the only hope for electrifying the most remote inhabitants of the planet, where conventional electric grids do not reach because they are unaffordable. Almost all countries in the world have had some kind of rural photovoltaic electrification programme during the past 40 years, mainly the poorer countries, where through different organizational models, millions of solar home systems (small photovoltaic systems for domestic use) have been installed. During this long period, many barriers have been overcome, such as quality enhancement, cost reduction, the optimization of designing and sizing, financial availability, etc. Thanks to this, decentralized rural electrification has recently experienced a change of scale characterized by new programmes with thousands of solar home systems and long maintenance periods. Many of these large programmes are being developed with limited success, as they have generally been based on assumptions that do not correspond to reality, compromising the economic return that allows long term activity. In this scenario a new challenge emerges, which approaches the sustainability of large programmes. It is argued that the main cause of unprofitability is the unexpected high cost of the operation and maintenance of the solar systems. In fact, the lack of a paradigm in decentralized rural services has led to many private companies to carry out decentralized electrification programmes blindly. Issues such as the operation and maintenance cost structure or the reliability of the solar home system components have still not been characterized. This situation does not allow optimized maintenance structure to be designed to assure the sustainability and profitability of the operation and maintenance service. This PhD thesis aims to respond to these needs. Several studies have been carried out based on a real and large photovoltaic rural electrification programme carried out in Morocco with more than 13,000 solar home systems. An in‐depth reliability assessment has been made from a 5‐year maintenance database with more than 80,000 maintenance inputs. The results have allowed us to establish the real reliability functions, the failure rate and the main time to failure of the main components of the system, reporting these findings for the first time in the field of rural electrification. Both in‐field experiments on the capacity degradation of batteries and power degradation of photovoltaic modules have been carried out. During the experiments both samples of batteries and modules were operating under real conditions integrated into the solar home systems of the Moroccan programme. In the case of the batteries, the results have enabled us to obtain a proposal of definition of death of batteries in rural electrification. A cost assessment of the Moroccan experience based on a 5‐year accounting database has been carried out to characterize the cost structure of the programme. The results have allowed the major costs of the photovoltaic electrification to be defined. The overall cost ratio per installed system has been calculated together with the necessary fees that users would have to pay to make the operation and maintenance affordable. Finally, a mathematical optimization model has been proposed to design maintenance structures based on the previous study results. The tool has been applied to the Moroccan programme with the aim of validating the model.
Resumo:
Water stress (WS) slows growth and photosynthesis (An), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (gsw) decreased to two pre-defined values for 24 d, WS was maintained at the target gsw for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (gm) of accounting for the resistance to refixation of CO2. The diffusive limitations to CO2, dominated by the stomata, were the most important constraints to An. Full recovery of An was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of gsw. The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.
Resumo:
Thermal imaging has been used to evaluate the response to drought and warm temperatures in a collection of Brachypodium distachyon lines adapted to varied environmental conditions. Thermographic records were able to separate lines from contrasting rainfall regimes. Genotypes from dryer environments showed warmer leaves under water deficit, which suggested that decreased evapotranspiration was related to a more intense stomatal closure. When irrigated and under high temperature conditions, drought-adapted lines showed cooler leaves than lines from wetter zones. The consistent, inverse thermographic response of lines to water stress and heat validates the reliability of this method to assess drought tolerance in this model cereal. It additionally supports the hypothesis that stomatal-based mechanisms are involved in natural variation for drought tolerance in Brachypodium. The study further suggests that these mechanisms are not constitutive but likely related to a more efficient closing response to avoid dehydration in adapted genotypes. Higher leaf temperature under water deficit seems a dependable criterion of drought tolerance, not only in B. distachyon but also in the main cereal crops and related grasses where thermography can facilitate high-throughput preliminary screening of tolerant materials.
Resumo:
Tablas de Daimiel National Park is located in the Upper Guadiana Basin and represents one of the largest and most important wetlands in Europe. The long term ecological integrity of this wetland is inherently associated with the maintenance of a shallow groundwater table, namely the Western Mancha aquifer (WMA) or Aquifer 23. The intensive use of groundwater, mainly for irrigation, has led over the last decades to deep socio‐economic changes. Such intensive use has also lowered the water table of Aquifer 23, drastically reducing the flooded area of the wetland and threatening its ecological integrity. A number of plans and measures have been developed and implemented since the declaration of overexploitation of Aquifer 23 in the year 1987. The most recent one is the Special Plan for the Upper Guadiana (SPUG), approved in 2008. This Plan is the main measure to comply with achieving the objective of good quantitative and qualitative status required under the Water Framework Directive (2000). This paper offers a new type of integrated analysis which allows assessing under a common lens the physical, economic and social dimensions of groundwater use in the area. The first objective is to calculate the groundwater footprint of agricultural production in the Upper Guadiana basin and its evolution during 2000‐2008. For this purpose, we have applied the Extended Water Footprint (EWF) methodology ‐a novel approach based on the classical Water Footprint (WF) approach‐ that includes an assessment of the water productivity from an economic and social perspective. Compared to the classical WF, the EWF allows for a more complete overview of the sector, providing new insights for policy decisions (e.g. to define options and possibilities on water re‐allocation in order to achieve both better ecosystem conservation and social equity). The second objective is to use the EWF to compare the existing authorized and non‐authorized or illegal use of water. This allows us to discuss current initiatives by public authorities in relation to the existing frame of water rights
Resumo:
Abstract This paper describes a two-part methodology for managing the risk posed by water supply variability to irrigated agriculture. First, an econometric model is used to explain the variation in the production value of irrigated agriculture. The explanatory variables include an index of irrigation water availability (surface storage levels), a price index representative of the crops grown in each geographical unit, and a time variable. The model corrects for autocorrelation and it is applied to 16 representative Spanish provinces in terms of irrigated agriculture. In the second part, the fitted models are used for the economic evaluation of drought risk. In flow variability in the hydrological system servicing each province is used to perform ex-ante evaluations of economic output for the upcoming irrigation season. The model?s error and the probability distribution functions (PDFs) of the reservoirs? storage variations are used to generate Monte Carlo (Latin Hypercube) simulations of agricultural output 7 and 3 months prior to the irrigation season. The results of these simulations illustrate the different risk profiles of each management unit, which depend on farm productivity and on the probability distribution function of water in flow to reservoirs. The potential for ex-ante drought impact assessments is demonstrated. By complementing hydrological models, this method can assist water managers and decisionmakers in managing reservoirs.