4 resultados para Regression To The Mean
em Universidad Politécnica de Madrid
Resumo:
Within the regression framework, we show how different levels of nonlinearity influence the instantaneous firing rate prediction of single neurons. Nonlinearity can be achieved in several ways. In particular, we can enrich the predictor set with basis expansions of the input variables (enlarging the number of inputs) or train a simple but different model for each area of the data domain. Spline-based models are popular within the first category. Kernel smoothing methods fall into the second category. Whereas the first choice is useful for globally characterizing complex functions, the second is very handy for temporal data and is able to include inner-state subject variations. Also, interactions among stimuli are considered. We compare state-of-the-art firing rate prediction methods with some more sophisticated spline-based nonlinear methods: multivariate adaptive regression splines and sparse additive models. We also study the impact of kernel smoothing. Finally, we explore the combination of various local models in an incremental learning procedure. Our goal is to demonstrate that appropriate nonlinearity treatment can greatly improve the results. We test our hypothesis on both synthetic data and real neuronal recordings in cat primary visual cortex, giving a plausible explanation of the results from a biological perspective.
Resumo:
We study the first passage statistics to adsorbing boundaries of a Brownian motion in bounded two-dimensional domains of different shapes and configurations of the adsorbing and reflecting boundaries. From extensive numerical analysis we obtain the probability P(ω) distribution of the random variable ω=τ1/(τ1+τ2), which is a measure for how similar the first passage times τ1 and τ2 are of two independent realizations of a Brownian walk starting at the same location. We construct a chart for each domain, determining whether P(ω) represents a unimodal, bell-shaped form, or a bimodal, M-shaped behavior. While in the former case the mean first passage time (MFPT) is a valid characteristic of the first passage behavior, in the latter case it is an insufficient measure for the process. Strikingly we find a distinct turnover between the two modes of P(ω), characteristic for the domain shape and the respective location of absorbing and reflective boundaries. Our results demonstrate that large fluctuations of the first passage times may occur frequently in two-dimensional domains, rendering quite vague the general use of the MFPT as a robust measure of the actual behavior even in bounded domains, in which all moments of the first passage distribution exist.
Resumo:
Acquired brain injury (ABI) is one of the leading causes of death and disability in the world and is associated with high health care costs as a result of the acute treatment and long term rehabilitation involved. Different algorithms and methods have been proposed to predict the effectiveness of rehabilitation programs. In general, research has focused on predicting the overall improvement of patients with ABI. The purpose of this study is the novel application of data mining (DM) techniques to predict the outcomes of cognitive rehabilitation in patients with ABI. We generate three predictive models that allow us to obtain new knowledge to evaluate and improve the effectiveness of the cognitive rehabilitation process. Decision tree (DT), multilayer perceptron (MLP) and general regression neural network (GRNN) have been used to construct the prediction models. 10-fold cross validation was carried out in order to test the algorithms, using the Institut Guttmann Neurorehabilitation Hospital (IG) patients database. Performance of the models was tested through specificity, sensitivity and accuracy analysis and confusion matrix analysis. The experimental results obtained by DT are clearly superior with a prediction average accuracy of 90.38%, while MLP and GRRN obtained a 78.7% and 75.96%, respectively. This study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients.
Resumo:
In electric vehicles, passengers sit very close to an electric system of significant power. The high currents achieved in these vehicles mean that the passengers could be exposed to significant magnetic fields. One of the electric devices present in the power train are the batteries. In this paper, a methodology to evaluate the magnetic field created by these batteries is presented. First, the magnetic field generated by a single battery is analyzed using finite elements simulations. Results are compared to laboratory measurements, taken from a real battery, in order to validate the model. After this, the magnetic field created by a complete battery pack is estimated and results are discussed.