2 resultados para Reconfiguração de redes de distribuição. Perdas. Recomposição de serviço. Planejamento de sistemas de distribuição. Operação de sistemas de distribuição. Parâmetros de sensibilidade

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durante la actividad diaria, la sociedad actual interactúa constantemente por medio de dispositivos electrónicos y servicios de telecomunicaciones, tales como el teléfono, correo electrónico, transacciones bancarias o redes sociales de Internet. Sin saberlo, masivamente dejamos rastros de nuestra actividad en las bases de datos de empresas proveedoras de servicios. Estas nuevas fuentes de datos tienen las dimensiones necesarias para que se puedan observar patrones de comportamiento humano a grandes escalas. Como resultado, ha surgido una reciente explosión sin precedentes de estudios de sistemas sociales, dirigidos por el análisis de datos y procesos computacionales. En esta tesis desarrollamos métodos computacionales y matemáticos para analizar sistemas sociales por medio del estudio combinado de datos derivados de la actividad humana y la teoría de redes complejas. Nuestro objetivo es caracterizar y entender los sistemas emergentes de interacciones sociales en los nuevos espacios tecnológicos, tales como la red social Twitter y la telefonía móvil. Analizamos los sistemas por medio de la construcción de redes complejas y series temporales, estudiando su estructura, funcionamiento y evolución en el tiempo. También, investigamos la naturaleza de los patrones observados por medio de los mecanismos que rigen las interacciones entre individuos, así como medimos el impacto de eventos críticos en el comportamiento del sistema. Para ello, hemos propuesto modelos que explican las estructuras globales y la dinámica emergente con que fluye la información en el sistema. Para los estudios de la red social Twitter, hemos basado nuestros análisis en conversaciones puntuales, tales como protestas políticas, grandes acontecimientos o procesos electorales. A partir de los mensajes de las conversaciones, identificamos a los usuarios que participan y construimos redes de interacciones entre los mismos. Específicamente, construimos una red para representar quién recibe los mensajes de quién y otra red para representar quién propaga los mensajes de quién. En general, hemos encontrado que estas estructuras tienen propiedades complejas, tales como crecimiento explosivo y distribuciones de grado libres de escala. En base a la topología de estas redes, hemos indentificado tres tipos de usuarios que determinan el flujo de información según su actividad e influencia. Para medir la influencia de los usuarios en las conversaciones, hemos introducido una nueva medida llamada eficiencia de usuario. La eficiencia se define como el número de retransmisiones obtenidas por mensaje enviado, y mide los efectos que tienen los esfuerzos individuales sobre la reacción colectiva. Hemos observado que la distribución de esta propiedad es ubicua en varias conversaciones de Twitter, sin importar sus dimensiones ni contextos. Con lo cual, sugerimos que existe universalidad en la relación entre esfuerzos individuales y reacciones colectivas en Twitter. Para explicar los factores que determinan la emergencia de la distribución de eficiencia, hemos desarrollado un modelo computacional que simula la propagación de mensajes en la red social de Twitter, basado en el mecanismo de cascadas independientes. Este modelo nos permite medir el efecto que tienen sobre la distribución de eficiencia, tanto la topología de la red social subyacente, como la forma en que los usuarios envían mensajes. Los resultados indican que la emergencia de un grupo selecto de usuarios altamente eficientes depende de la heterogeneidad de la red subyacente y no del comportamiento individual. Por otro lado, hemos desarrollado técnicas para inferir el grado de polarización política en redes sociales. Proponemos una metodología para estimar opiniones en redes sociales y medir el grado de polarización en las opiniones obtenidas. Hemos diseñado un modelo donde estudiamos el efecto que tiene la opinión de un pequeño grupo de usuarios influyentes, llamado élite, sobre las opiniones de la mayoría de usuarios. El modelo da como resultado una distribución de opiniones sobre la cual medimos el grado de polarización. Aplicamos nuestra metodología para medir la polarización en redes de difusión de mensajes, durante una conversación en Twitter de una sociedad políticamente polarizada. Los resultados obtenidos presentan una alta correspondencia con los datos offline. Con este estudio, hemos demostrado que la metodología propuesta es capaz de determinar diferentes grados de polarización dependiendo de la estructura de la red. Finalmente, hemos estudiado el comportamiento humano a partir de datos de telefonía móvil. Por una parte, hemos caracterizado el impacto que tienen desastres naturales, como innundaciones, sobre el comportamiento colectivo. Encontramos que los patrones de comunicación se alteran de forma abrupta en las áreas afectadas por la catástofre. Con lo cual, demostramos que se podría medir el impacto en la región casi en tiempo real y sin necesidad de desplegar esfuerzos en el terreno. Por otra parte, hemos estudiado los patrones de actividad y movilidad humana para caracterizar las interacciones entre regiones de un país en desarrollo. Encontramos que las redes de llamadas y trayectorias humanas tienen estructuras de comunidades asociadas a regiones y centros urbanos. En resumen, hemos mostrado que es posible entender procesos sociales complejos por medio del análisis de datos de actividad humana y la teoría de redes complejas. A lo largo de la tesis, hemos comprobado que fenómenos sociales como la influencia, polarización política o reacción a eventos críticos quedan reflejados en los patrones estructurales y dinámicos que presentan la redes construidas a partir de datos de conversaciones en redes sociales de Internet o telefonía móvil. ABSTRACT During daily routines, we are constantly interacting with electronic devices and telecommunication services. Unconsciously, we are massively leaving traces of our activity in the service providers’ databases. These new data sources have the dimensions required to enable the observation of human behavioral patterns at large scales. As a result, there has been an unprecedented explosion of data-driven social research. In this thesis, we develop computational and mathematical methods to analyze social systems by means of the combined study of human activity data and the theory of complex networks. Our goal is to characterize and understand the emergent systems from human interactions on the new technological spaces, such as the online social network Twitter and mobile phones. We analyze systems by means of the construction of complex networks and temporal series, studying their structure, functioning and temporal evolution. We also investigate on the nature of the observed patterns, by means of the mechanisms that rule the interactions among individuals, as well as on the impact of critical events on the system’s behavior. For this purpose, we have proposed models that explain the global structures and the emergent dynamics of information flow in the system. In the studies of the online social network Twitter, we have based our analysis on specific conversations, such as political protests, important announcements and electoral processes. From the messages related to the conversations, we identify the participant users and build networks of interactions with them. We specifically build one network to represent whoreceives- whose-messages and another to represent who-propagates-whose-messages. In general, we have found that these structures have complex properties, such as explosive growth and scale-free degree distributions. Based on the topological properties of these networks, we have identified three types of user behavior that determine the information flow dynamics due to their influence. In order to measure the users’ influence on the conversations, we have introduced a new measure called user efficiency. It is defined as the number of retransmissions obtained by message posted, and it measures the effects of the individual activity on the collective reacixtions. We have observed that the probability distribution of this property is ubiquitous across several Twitter conversation, regardlessly of their dimension or social context. Therefore, we suggest that there is a universal behavior in the relationship between individual efforts and collective reactions on Twitter. In order to explain the different factors that determine the user efficiency distribution, we have developed a computational model to simulate the diffusion of messages on Twitter, based on the mechanism of independent cascades. This model, allows us to measure the impact on the emergent efficiency distribution of the underlying network topology, as well as the way that users post messages. The results indicate that the emergence of an exclusive group of highly efficient users depends upon the heterogeneity of the underlying network instead of the individual behavior. Moreover, we have also developed techniques to infer the degree of polarization in social networks. We propose a methodology to estimate opinions in social networks and to measure the degree of polarization in the obtained opinions. We have designed a model to study the effects of the opinions of a small group of influential users, called elite, on the opinions of the majority of users. The model results in an opinions distribution to which we measure the degree of polarization. We apply our methodology to measure the polarization on graphs from the messages diffusion process, during a conversation on Twitter from a polarized society. The results are in very good agreement with offline and contextual data. With this study, we have shown that our methodology is capable of detecting several degrees of polarization depending on the structure of the networks. Finally, we have also inferred the human behavior from mobile phones’ data. On the one hand, we have characterized the impact of natural disasters, like flooding, on the collective behavior. We found that the communication patterns are abruptly altered in the areas affected by the catastrophe. Therefore, we demonstrate that we could measure the impact of the disaster on the region, almost in real-time and without needing to deploy further efforts. On the other hand, we have studied human activity and mobility patterns in order to characterize regional interactions on a developing country. We found that the calls and trajectories networks present community structure associated to regional and urban areas. In summary, we have shown that it is possible to understand complex social processes by means of analyzing human activity data and the theory of complex networks. Along the thesis, we have demonstrated that social phenomena, like influence, polarization and reaction to critical events, are reflected in the structural and dynamical patterns of the networks constructed from data regarding conversations on online social networks and mobile phones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hoy en día asistimos a un creciente interés por parte de la sociedad hacia el cuidado de la salud. Esta afirmación viene apoyada por dos realidades. Por una parte, el aumento de las prácticas saludables (actividad deportiva, cuidado de la alimentación, etc.). De igual manera, el auge de los dispositivos inteligentes (relojes, móviles o pulseras) capaces de medir distintos parámetros físicos como el pulso cardíaco, el ritmo respiratorio, la distancia recorrida, las calorías consumidas, etc. Combinando ambos factores (interés por el estado de salud y disponibilidad comercial de dispositivos inteligentes) están surgiendo multitud de aplicaciones capaces no solo de controlar el estado actual de salud, también de recomendar al usuario cambios de hábitos que lleven hacia una mejora en su condición física. En este contexto, los llamados dispositivos llevables (weareables) unidos al paradigma de Internet de las cosas (IoT, del inglés Internet of Things) permiten la aparición de nuevos nichos de mercado para aplicaciones que no solo se centran en la mejora de la condición física, ya que van más allá proponiendo soluciones para el cuidado de pacientes enfermos, la vigilancia de niños o ancianos, la defensa y la seguridad, la monitorización de agentes de riesgo (como bomberos o policías) y un largo etcétera de aplicaciones por llegar. El paradigma de IoT se puede desarrollar basándose en las existentes redes de sensores inalámbricos (WSN, del inglés Wireless Sensor Network). La conexión de los ya mencionados dispositivos llevables a estas redes puede facilitar la transición de nuevos usuarios hacia aplicaciones IoT. Pero uno de los problemas intrínsecos a estas redes es su heterogeneidad. En efecto, existen multitud de sistemas operativos, protocolos de comunicación, plataformas de desarrollo, soluciones propietarias, etc. El principal objetivo de esta tesis es realizar aportaciones significativas para solucionar no solo el problema de la heterogeneidad, sino también de dotar de mecanismos de seguridad suficientes para salvaguardad la integridad de los datos intercambiados en este tipo de aplicaciones. Algo de suma importancia ya que los datos médicos y biométricos de los usuarios están protegidos por leyes nacionales y comunitarias. Para lograr dichos objetivos, se comenzó con la realización de un completo estudio del estado del arte en tecnologías relacionadas con el marco de investigación (plataformas y estándares para WSNs e IoT, plataformas de implementación distribuidas, dispositivos llevables y sistemas operativos y lenguajes de programación). Este estudio sirvió para tomar decisiones de diseño fundamentadas en las tres contribuciones principales de esta tesis: un bus de servicios para dispositivos llevables (WDSB, Wearable Device Service Bus) basado en tecnologías ya existentes tales como ESB, WWBAN, WSN e IoT); un protocolo de comunicaciones inter-dominio para dispositivos llevables (WIDP, Wearable Inter-Domain communication Protocol) que integra en una misma solución protocolos capaces de ser implementados en dispositivos de bajas capacidades (como lo son los dispositivos llevables y los que forman parte de WSNs); y finalmente, la tercera contribución relevante es una propuesta de seguridad para WSN basada en la aplicación de dominios de confianza. Aunque las contribuciones aquí recogidas son de aplicación genérica, para su validación se utilizó un escenario concreto de aplicación: una solución para control de parámetros físicos en entornos deportivos, desarrollada dentro del proyecto europeo de investigación “LifeWear”. En este escenario se desplegaron todos los elementos necesarios para validar las contribuciones principales de esta tesis y, además, se realizó una aplicación para dispositivos móviles por parte de uno de los socios del proyecto (lo que contribuyó con una validación externa de la solución). En este escenario se usaron dispositivos llevables tales como un reloj inteligente, un teléfono móvil con sistema operativo Android y un medidor del ritmo cardíaco inalámbrico capaz de obtener distintos parámetros fisiológicos del deportista. Sobre este escenario se realizaron diversas pruebas de validación mediante las cuales se obtuvieron resultados satisfactorios. ABSTRACT Nowadays, society is shifting towards a growing interest and concern on health care. This phenomenon can be acknowledged by two facts: first, the increasing number of people practising some kind of healthy activity (sports, balanced diet, etc.). Secondly, the growing number of commercial wearable smart devices (smartwatches or bands) able to measure physiological parameters such as heart rate, breathing rate, distance or consumed calories. A large number of applications combining both facts are appearing. These applications are not only able to monitor the health status of the user, but also to provide recommendations about routines in order to improve the mentioned health status. In this context, wearable devices merged with the Internet of Things (IoT) paradigm enable the proliferation of new market segments for these health wearablebased applications. Furthermore, these applications can provide solutions for the elderly or baby care, in-hospital or in-home patient monitoring, security and defence fields or an unforeseen number of future applications. The introduced IoT paradigm can be developed with the usage of existing Wireless Sensor Networks (WSNs) by connecting the novel wearable devices to them. In this way, the migration of new users and actors to the IoT environment will be eased. However, a major issue appears in this environment: heterogeneity. In fact, there is a large number of operating systems, hardware platforms, communication and application protocols or programming languages, each of them with unique features. The main objective of this thesis is defining and implementing a solution for the intelligent service management in wearable and ubiquitous devices so as to solve the heterogeneity issues that are presented when dealing with interoperability and interconnectivity of devices and software of different nature. Additionally, a security schema based on trust domains is proposed as a solution to the privacy problems arising when private data (e.g., biomedical parameters or user identification) is broadcasted in a wireless network. The proposal has been made after a comprehensive state-of-the-art analysis, and includes the design of a Wearable Device Service Bus (WDSB) including the technologies collected in the requirement analysis (ESB, WWBAN, WSN and IoT). Applications are able to access the WSN services regardless of the platform and operating system where they are running. Besides, this proposal also includes the design of a Wearable Inter-Domain communication Protocols set (WIDP) which integrates lightweight protocols suitable to be used in low-capacities devices (REST, JSON, AMQP, CoAP, etc...). Furthermore, a security solution for service management based on a trustworthy domains model to deploy security services in WSNs has been designed. Although the proposal is a generic framework for applications based on services provided by wearable devices, an application scenario for testing purposes has been included. In this validation scenario it has been presented an autonomous physical condition performance system, based on a WSN, bringing the possibility to include several elements in an IoT scenario: a smartwatch, a physiological monitoring device and a smartphone. In summary, the general objective of this thesis is solving the heterogeneity and security challenges arising when developing applications for WSNs and wearable devices. As it has been presented in the thesis, the solution proposed has been successfully validated in a real scenario and the obtained results were satisfactory.