1 resultado para Recognition of victims
em Universidad Politécnica de Madrid
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Archive of European Integration (17)
- Aston University Research Archive (11)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (29)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (52)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (50)
- Brock University, Canada (14)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (64)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (14)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (17)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (31)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (17)
- Duke University (1)
- Galway Mayo Institute of Technology, Ireland (2)
- Institute of Public Health in Ireland, Ireland (7)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (6)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (8)
- National Center for Biotechnology Information - NCBI (45)
- Nottingham eTheses (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (66)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (68)
- Scientific Open-access Literature Archive and Repository (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (10)
- Universidad Politécnica de Madrid (1)
- Universidade do Minho (6)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (141)
- Université de Montréal (1)
- Université de Montréal, Canada (20)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (13)
- University of Queensland eSpace - Australia (50)
- University of Southampton, United Kingdom (1)
Resumo:
In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.