6 resultados para Realty Trust Co. (Atlanta, Ga.)
em Universidad Politécnica de Madrid
Resumo:
Precise modeling of the program heap is fundamental for understanding the behavior of a program, and is thus of signiflcant interest for many optimization applications. One of the fundamental properties of the heap that can be used in a range of optimization techniques is the sharing relationships between the elements in an array or collection. If an analysis can determine that the memory locations pointed to by different entries of an array (or collection) are disjoint, then in many cases loops that traverse the array can be vectorized or transformed into a thread-parallel versión. This paper introduces several novel sharing properties over the concrete heap and corresponding abstractions to represent them. In conjunction with an existing shape analysis technique, these abstractions allow us to precisely resolve the sharing relations in a wide range of heap structures (arrays, collections, recursive data structures, composite heap structures) in a computationally efflcient manner. The effectiveness of the approach is evaluated on a set of challenge problems from the JOlden and SPECjvm98 suites. Sharing information obtained from the analysis is used to achieve substantial thread-level parallel speedups.
Resumo:
A method to study some neuronal functions, based on the use of the Feynman diagrams, employed in many-body theory, is reported. An equation obtained from the neuron cable theory is the basis for the method. The Green's function for this equation is obtained under some simple boundary conditions. An excitatory signal, with different conditions concerning high and pulse duration, is employed as input signal. Different responses have been obtained
Resumo:
A method to achieve improvement in template size for an iris-recognition system is reported. To achieve this result, the biological characteristics of the human iris have been studied. Processing has been performed by image processing techniques, isolating the iris and enhancing the area of study, after which multi resolution analysis is made. Reduction of the pattern obtained has been obtained via statistical study.
Resumo:
Reproducibility of published results is a cornerstone in scientific publishing and progress. Therefore, the scientific community has been encouraging authors and editors to publish their contributions in a verifiable and understandable way. Efforts such as the Reproducibility Initiative [1], or the Reproducibility Projects on Biology [2] and Psychology [3] domains, have been defining standards and patterns to assess whether an experimental result is reproducible.
Resumo:
This work aims to develop a novel Cross-Entropy (CE) optimization-based fuzzy controller for Unmanned Aerial Monocular Vision-IMU System (UAMVIS) to solve the seeand- avoid problem using its accurate autonomous localization information. The function of this fuzzy controller is regulating the heading of this system to avoid the obstacle, e.g. wall. In the Matlab Simulink-based training stages, the Scaling Factor (SF) is adjusted according to the specified task firstly, and then the Membership Function (MF) is tuned based on the optimized Scaling Factor to further improve the collison avoidance performance. After obtained the optimal SF and MF, 64% of rules has been reduced (from 125 rules to 45 rules), and a large number of real flight tests with a quadcopter have been done. The experimental results show that this approach precisely navigates the system to avoid the obstacle. To our best knowledge, this is the first work to present the optimized fuzzy controller for UAMVIS using Cross-Entropy method in Scaling Factors and Membership Functions optimization.
Resumo:
This work aims to develop a novel Cross-Entropy (CE) optimization-based fuzzy controller for Unmanned Aerial Monocular Vision-IMU System (UAMVIS) to solve the seeand-avoid problem using its accurate autonomous localization information. The function of this fuzzy controller is regulating the heading of this system to avoid the obstacle, e.g. wall. In the Matlab Simulink-based training stages, the Scaling Factor (SF) is adjusted according to the specified task firstly, and then the Membership Function (MF) is tuned based on the optimized Scaling Factor to further improve the collison avoidance performance. After obtained the optimal SF and MF, 64% of rules has been reduced (from 125 rules to 45 rules), and a large number of real flight tests with a quadcopter have been done. The experimental results show that this approach precisely navigates the system to avoid the obstacle. To our best knowledge, this is the first work to present the optimized fuzzy controller for UAMVIS using Cross-Entropy method in Scaling Factors and Membership Functions optimization.