29 resultados para Real Academia Nacional de Medicina (España)
em Universidad Politécnica de Madrid
Resumo:
En esta introducción se resumen los avatares superados por la Real Academia de Ingeniería hasta conseguir la adjudicación del actual edificio. Alrededor del último cuarto del siglo xx se produjo un movimiento mundial de reconocimiento del papel de la Ingeniería como factor de progreso, que se materializó en la creación de Academias de Ingeniería en numerosos países. La Academia de Ingeniería española fue fundada por S. M. el Rey Juan Carlos I mediante Real Decreto el 29 de abril de 1994 a propuesta del Ministro D. Gustavo Suárez Pertierra. Sus primeros treinta y seis miembros fueron designados por el Ministerio de Educación y Ciencia a propuesta del Instituto de la Ingeniería de España (18 Académicos), las Universidades (7), el Instituto de España ( 6) y la Secretaría de Estado de Universidades e Investigación (5).Desde 1994 a 1998 la Academia estuvo bajo el protectorado del Ministerio de Educación. La Presidencia era ostentada por el Secretario de Estado y, por delegación, por el Académico Excmo. Sr. D. Elías Fereres. Durante estos años se llevaron a cabo numerosas reuniones con el fin de establecer el Reglamento de Régimen Interior, generalmente celebradas en la Escuela de Caminos usando la antigua Sala de Profesores y otros lugares para reuniones esporádicas, como el Consejo Superior de Investigaciones Científicas, el Instituto Eduardo Torroja de Ciencias de la Construcción, etc. Los problemas comenzaron cuando, aprobado el Reglamento, se empezó a elegir a los primeros Académicos Numerarios y se planteó la selección de una sala digna para los actos de ingreso. Afortunadamente, la Escuela Técnica Superior de Ingenieros de Minas de la Universidad Politécnica de Madrid ofreció su espléndido salón de actos para que se celebraran las tomas de posesión y, a partir de entonces, fue utilizado a menudo. Al cumplirse los cuatro primeros años desde la fundación terminó la etapa de protectorado de Ministerio de Educación y el 19 de enero de 1999 se procedió a la elección de la primera Junta de Gobierno autónoma y se acentúo la necesidad de una nueva Sede, entre otras razones por el incremento de los actos públicos de la Academia, la toma de posesión de nuevos Académicos Numerarios y la necesidad de crear una imagen institucional.
Resumo:
En este último Mensaje como Presidente envío mi agradecimiento a todos los amigos de instituciones, empresas y universidades que han sabido comprender lo importante que, para España, es llevar a buen término el desarrollo de esta Academia y a todos los Académicos que han sufrido con paciencia mis errores y siempre han respondido, con generosidad , a mis demandas de su tiempo. Finalmente mi reconocimiento a la labor de los compañeros de la Junta de Gobierno cuya inteligencia, vocación de servicio y capacidad de trabajo sólo son comparables a la lealtad demostrada durante estos años en que he tenido el privilegio de trabajar a su lado.
Resumo:
El que fuera Presidente de la Real Academia de Ingeniería, Enrique Alarcón, cuenta el proceso de gestación de esta institución, a la que acaba de sumarse el Colegio Oficial de Ingenieros Técnicos de Telecomunicación, el primer Colegio de ingeniería técnica que disfruta de tal distinción. En el año 2003, fue elegida la segunda Junta de Gobierno de la Real Academia de Ingeniería, presidida por el autor de este artículo. Durante su gestión, la Real Academia de Ingeniería logró su actual sede, en la madrileña calle de Don Pedro, y obtuvo el título de Real.
Resumo:
El discurso dedica una parte significativa a mostrar algunos estudios sobre el comportamiento dinámico de estructuras en las que la interacción con el suelo juega un papel importante, en su respuesta ante solicitaciones que varían rápidamente a lo largo del tiempo. Problemas tales como: el del comportamiento de una turbina generadora de electricidad, la respuesta sísmica de un gran edificio, la de una presa o la de una central nuclear, o el comportamiento dinámico de un tren cuando circula a 300 Km/h, tienen en común que ninguno de ellos puede ser analizado estudiando aisladamente la turbina, el edificio, la presa, la central o el tren, sino que cualquiera de ellos debe estudiarse como un sistema acoplado donde intervienen, la estructura de referencia y el suelo que la soporta. En todos ellos, la propagación de ondas en el suelo juega un papel primordial en el comportamiento del sistema y por tanto, en el de la estructura. La última parte de su intervención la dedica a algo, que siendo distinto de lo anterior, no es ajeno a cualquier actividad investigadora llevada a cabo por un universitario. Trata brevemente sobre el papel que juega la universidad en la creación del conocimiento científico y técnico, y en su puesta en valor al servicio de la sociedad.
Resumo:
En el discurso se reivindica el papel actual de la ingeniería mecánica como impulsora del desarrollo de las máquinas. Comienza con una breve exposición de la evolución de las máquinas a lo largo de la historia y su influencia en el desarrollo económico y social. Igualmente, señala la importancia de otras áreas de la ingeniería en el desarrollo de las máquinas actuales y el carácter multidisciplinar del diseño y desarrollo de las máquinas actuales. Ante la nueva situación, el discurso analiza el papel que desempeña actualmente la ingeniería de máquinas. Asimismo, comprueba que la aportación de otras disciplinas ha llevado a la concepción de máquinas con soluciones, más eficientes y eficaces, que requieren nuevos avances de la ingeniería de máquinas. Finalmente, se muestran diversos ejemplos significativos de los avances requeridos para el diseño de las máquinas actuales, entre los que destacan los relativos al análisis dinámico y a la fatiga. Entre los problemas dinámicos, se analizan los casos del comportamiento de sistemas multicuerpos con holgura o sujetos a impactos, y la detección de grietas en rotores mediante la medida de vibraciones. Del análisis del comportamiento a fatiga, se destaca la importancia de la aplicación conjunta de la mecánica de la fractura y el método de las deformaciones locales, especialmente para el análisis del comportamiento de grietas microestructuralmente pequeñas.
Resumo:
"Van pudiendo por creer que pueden", dice Virgilio de la tripulación de Mnesteo durante la regata en honor de Anquises, y no se me ocurre mejor descripción de nuestro avance durante la primera mitad del año en que estamos celebrando el décimo aniversario de nuestra fundación: todos los compañeros y en especial los responsables de organización de las Jornadas Conmemorativas se están volcando para conseguir superar las limitaciones de una Academia joven y mostrar la fuerza de la ingeniería española.
Resumo:
La Academia de Ingeniería fue fundada como Corporación de Derecho Público por Real Decreto de S. M. Juan Carlos I el 29 de abril de 1994 y recibió el título de «real» el 14 de julio de 2003. Según indican sus estatutos, se trataba de crear una entidad activa y cualificada en la prospección y análisis crítico de la evolución científica y técnica con capacidad de aconsejar tanto a organismos del Estado como a la sociedad en general. La promoción de la calidad y la competencia de la ingeniería es el objetivo permanente de la RAI. Se intenta cumplir con él actuando en varios frentes. En primer lugar reconociendo el mérito: el de las personas mediante su elección como miembros de la Academia, el de las empresas mediante el Premio Academiae Dilecta, y el de los estudiosos mediante el Premio a los Investigadores Jóvenes. Se han creado foros de discusión, siguiendo diferentes formatos, para tratar sobre grandes temas de actualidad, tales como la aventura aeroespacial, la biotecnología, la seguridad frente a incendios en los túneles, la energía, el impacto medioambiental de las obras de ingeniería y el futuro de las grandes infraestructuras. También es una labor de estímulo de la calidad y competencia la edición de las Comunicaciones a la Academia, donde se remarca la importancia de la innovación invitando a equipos jóvenes a que presenten logros de la ingeniería española que hayan dado lugar a algún resultado tangible y no meramente especulativo. Satélites, nanotecnología, bioingeniería, comunicaciones, etc., son algunos de los temas de las comunicaciones publicadas hasta ahora. Otro delos fines de la Academia, según el artículo 3 de sus estatutos fundacionales es "elaborar y mantener actualizado un lexicón en lengua castellana de términos relativos a la ingeniería", y sobre ello trata este capítulo.
Resumo:
Discurso leído el día 12 de Marzo de 2006 en su recepción pública por el Excmo. Sr. Don Antonio Fernández de Alba con motivo de su ingreso en la Real Academia Española
Resumo:
El dióxido de carbono (CO2 ) es un gas de efecto invernadero que se encuentra naturalmente en la atmósfera. Las actividades antropogénicas, especialmente las derivadas de la generación eléctrica a partir de combustibles fósiles, están causando que la concentración de este gas aumente significativamente en la atmósfera. Esta situación contribuye al conocido y mundialmente aceptado cambio climático. Dentro de las posibilidades que se barajan para reducir las emisiones a la atmósfera de gases de efecto invernadero destaca el desarrollo de las tecnologías de captura y almacenamiento de CO2 (CAC), las cuales son aplicables principalmente a los grandes focos industriales, como las centrales térmicas, cementeras, refinerías, acerías, industrias cerámicas, etc. Estas tecnologías consisten en la separación del CO2 emitido por dichos focos emisores, para posteriormente comprimirlo y obtener así una corriente concentrada de CO2 , la cual sería susceptible de transportarse e inyectarse en un almacén geológico a una profundidad superior a 800 m para que alcanzara el estado supercrítico. Por lo tanto, el almacenamiento geológico profundo (AGP) de CO2 representa la última etapa de las tecnologías CAC. Aunque se tiene bastante experiencia en el campo de la inyección de CO2 como método para recuperar los yacimientos de petróleo y/o gas, ya agotados o en vías de agotamiento, el concepto de almacenamiento geológico de CO2 , como método de evitar las emisiones de este gas a la atmósfera y mitigar así el efecto invernadero, es relativamente reciente.
Resumo:
Después de analizar la situación energética actual y las distintas formas de almacenar la energía, sobre todo la proveniente de energías renovables, añadido a las preocupaciones sobre el cambio climático global, la degradación medioambiental resultante del uso de los combustibles fósiles como fuente primaria de energía, junto con las inquietudes sobre la seguridad en el suministro energético, han llevado a muchos analistas a proponer al hidrógeno como portador universal de energía para el futuro. El uso del hidrógeno como vector energético permite el desarrollo de un amplio número de tecnologías. En concreto, las pilas de combustible alimentadas con hidrógeno pueden alcanzar eficiencias elevadas y presentan una gran variedad de posibles aplicaciones, tanto móviles como estacionarias. En el caso de que las líneas de desarrollo actuales lleguen a buen término, el hidrógeno y las pilas de combustible podrán contribuir de forma sustancial a alcanzar los objetivos clave de las políticas energéticas (seguridad de suministro, reducción de emisiones de CO2), especialmente en el sector transporte. Los resultados alcanzados en los últimos años en los programas de investigación, desarrollo y demostración han incrementado claramente el interés internacional sobre estas tecnologías, de las que se piensa que tienen el potencial de crear un cambio de paradigma energético, tanto en las aplicaciones de transporte como en las de generación distribuida de potencia. A largo plazo, la incorporación del hidrógeno como nuevo vector energético, ofrece un escenario en el que se podrá producir hidrógeno a partir de agua, con electricidad y calor de origen renovable, y será posible su utilización para atender a todo tipo de demandas, tanto las convencionales de la industria, en las que el hidrógeno juega un papel de reactivo en procesos diversos, como las energéticas en las que jugaría su nuevo papel de portador de energía. Las únicas emisiones que llevaría asociada la utilización del hidrógeno renovable serían óxidos de nitrógeno que se producirían en procesos de combustión. Sin embargo, su uso en pilas de combustible llevaría a emisiones nulas. Si la fuente del hidrógeno es el gas natural o el carbón, entonces será esencial la captura y almacenamiento del CO2 para lograr ahorros en emisiones, pero, en cualquier caso, los vehículos propulsados por pilas de combustible alimentadas con hidrógeno siempre reducirán las emisiones locales, dado que en el uso final el único efluente es vapor de agua. La visión de este sistema económico-energético del H2, se basa en la expectativa de que el hidrógeno pueda producirse a partir de recursos domésticos, de forma económica y medioambientalmente aceptable y en que las tecnologías de uso final del hidrógeno (pilas de combustible) ganen una cuota de mercado significativa. Los que en el mundo abogan por el hidrógeno indican que, si se alcanzan estas expectativas, una «economía del hidrógeno» beneficiará al mundo proporcionando una mayor seguridad energética porque se diversificarán las fuentes de energía, y una mayor calidad medioambiental porque se reducirán significativamente las emisiones locales y globales
Resumo:
Dentro del objetivo común que persigue alcanzar una estabilidad social y una economía de éxito sostenible en el actual e incierto contexto mundial, el pronóstico es que la demanda de energía siga aumentando y que la generación mundial de electricidad se duplique entre los años 2005 y 2030. En este escenario, los combustibles fósiles podrían mantener una contribución muy significativa al mix energético posiblemente hasta el año 2050, participando del mercado de generación de energía eléctrica mundial en aproximadamente un 70% y siendo base de la generación de energía eléctrica europea en un 60%. El carbón sin duda seguirá teniendo una contribución clave. Este incremento en la demanda energética y energía eléctrica, en el consumo de carbón y de combustibles fósiles en general, sin duda tendrá impacto sobre los niveles de concentración de CO2 a nivel global en los diferentes escenarios evaluados, con un fatal pronóstico de triplicar, si no se contiene de alguna manera su emisión, los niveles actuales de concentración de CO2 hasta valores próximos a 1.200 ppm para finales de este siglo XXI. El Protocolo de Kyoto, adoptado en 1997, fue el primer tratado de responsabilidad a nivel mundial para el monitoreo y limitación de las emisiones de CO2, realizando una primera aproximación hasta el año 2012 y tomando como valores de referencia los referidos a los niveles de concentración de gases de efecto invernadero registrados en 1990. Algunos de los principales países emisores de CO2 como USA y China no ratificaron los objetivos de límite de emisión y niveles de reducción de CO2, y sin embargo están tomando sus propias acciones y medidas en paralelo para reducir sus emisiones. Los procesos de combustión más eficientes y con menor consumo de combustible, proporcionan una significativa contribución del sector de generación eléctrica a la reducción de los niveles de concentración de CO2, pero podría no ser suficiente. Tecnologías de captura y almacenamiento de carbono (CCS, del inglés Carbon Capture and Storage) han comenzado a ganar más importancia desde principios de esta década, se ha intensificado la investigación y proliferado la creación de fondos que impulsen su desarrollo y estimulen su despliegue. Tras los primeros proyectos de investigación básica y ensayos a pequeña escala, casi embrionaria, tres procesos de captura se posicionan como los más viables actualmente, con potencial para alcanzar niveles de reducción de CO2 del 90%, mediante su aplicación en centrales de carbón para generación eléctrica. En referencia al último paso del esquema CCS en el proceso de reducción de las ingentes cantidades de CO2 que habría que eliminar de la atmósfera, dos opciones deberían ser consideradas: la reutilización (EOR y EGR) y el almacenamiento. El presente artículo evalúa el estado de las diferentes tecnologías de captura de CO2, su disponibilidad, su desarrollo y su coste de instalación estimado. Se incorpora un pequeño análisis de los costes de operación y varias extrapolaciones, dado que solo están disponibles algunos de estos datos hasta la fecha. Además este artículo muestra los principales hallazgos y los potenciales de reducción de emisiones de CO2 en la utilización del carbón para generar electricidad y proporciona una visión del desarrollo y despliegue actual de la tecnología. Se realiza una revisión de las iniciativas existentes a nivel mundial mediante proyectos de demostración orientados a la viabilidad comercial del esquema CCS para el período 2020 ? 2030. Se evalúan los diferentes programas en curso y sus avances, como el programa de UK, el EEPR (European Energy Program for Recovery), etc. Las principales fuentes empleadas en la elaboración de este artículo son el DOE, NETL, MIT, EPRI, Centros e Institutos de Investigación, Universidades Europeas, Administraciones Públicas y Agencias Internacionales, suministradores de tecnología crítica, compañías eléctricas (utilities) y empresas tecnológicas.
Resumo:
El premio Nobel Herbert Simon en un ensayo de 1969, definía la ingeniería como la ciencia de lo artificial, cosa que treinta años antes ya estaba contenida an la "Meditación de la Técnica" de Ortega. Simon explica también que la tarea de la ingeniería es cómo diseñar y fabricar artefactos que tengan ciertas propiedades. Al establecer la relación entre el carácter del artefacto y su objetivo surge la necesidad de considerar la influencia del medio ambiente en el que aquél va a funcionar y por eso se puede ver el artefacto como una interfase entre el ambiente exterior y su estructura interior. Las ciencias naturales influyen directamente en estos dos términos y por ello la ingeniería moderna surge cuando se aplican de forma sistemática los conocimientos generados por la ciencia positiva que permiten analizar éxitos y fracasos desde un punto de vista nacional y predecir los efectos de las alteraciones que se introduzcan sobre los diseños iniciales. En España el patriarca de la ingeniería moderna es Agustín de Betancourt, personaje extraordinario al que recientemente la Real Academia de Ingeniería acaba de declarar Summa Auctoritates Academiae y en cuyo honor le ha dedicado un altorrelieve en el Puerto de la Cruz, lugar donde nació en 1758. Pero la ingeniería sólo es grande cuando coincide la calidad de cada uno de los tres factores que intervienen en la misma: proyectistas con imaginación y conocimientos, industria capaz de ofrecer los materiales más adecuados y llevar adelante los procesos de construcción o montaje que áquel imagine y promotores con la solvencia económica capaces de calibrar las ventajas de las soluciones que se ofrecen y apreciar factores imponderables como la innovación, la estética o la sostenibilidad que tanto añaden al cumplimiento de los fines utilitarios que se encuentran en el origen de las intervenciones. El capítulo está organizado en tres bloques: en el primero se muestran brevísimamente algunos arquetipos históricos de la ingeniería más antigua, así como la progresiva influencia de los conocimientos científicos hasta llegar a Betancourt. A continuación se marca la evolución de éste desde su etapa de formación a su transformación en un influyente inventor, pero también en un reformador de los cuerpos de la Administración y de la enseñanza. Finalmente dedicaré un tiempo a hablar del mantenimiento de su espíritu, a pesar de guerras y revoluciones, a lo largo del siglo XX, para concluir con una breve reflexión sobre las enseñanzas a extraer de su ejemplo.