37 resultados para Reactive Probabilistic Automata
em Universidad Politécnica de Madrid
Resumo:
In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.
Resumo:
In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-election of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested on decentralized solution where the robots themselves autonomously and in an individual manner, are responsible of selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-tasks distribution problem and we propose a solution using two different approaches by applying Ant Colony Optimization-based deterministic algorithms as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithm, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.
Resumo:
Polymer nanocomposites, specifically nanoclay-reinforced polymers, have attracted great interest as matrix materials for high temperature composite applications. Nanocomposites require relatively low dispersant loads to achieve significant property enhancements. These enhancements are mainly a consequence of the interfacial effects that result from dispersing the silicate nanolayers in the polymer matrix and the high in-plane strength, stiffness and aspect ratio of the lamellar nanoparticles. The montmorillonite (MMT) clay, modified with organic onium ions with long alkyl chains as Cloisites, has been widely used to obtain nanocomposites. The presence of reactive groups in organic onium ions can form chemical bonds with the polymer matrix which favours a very high exfoliation degree of the clay platelets in the nanocomposite (1,2)
Resumo:
We show a procedure for constructing a probabilistic atlas based on affine moment descriptors. It uses a normalization procedure over the labeled atlas. The proposed linear registration is defined by closed-form expressions involving only geometric moments. This procedure applies both to atlas construction as atlas-based segmentation. We model the likelihood term for each voxel and each label using parametric or nonparametric distributions and the prior term is determined by applying the vote-rule. The probabilistic atlas is built with the variability of our linear registration. We have two segmentation strategy: a) it applies the proposed affine registration to bring the target image into the coordinate frame of the atlas or b) the probabilistic atlas is non-rigidly aligning with the target image, where the probabilistic atlas is previously aligned to the target image with our affine registration. Finally, we adopt a graph cut - Bayesian framework for implementing the atlas-based segmentation.
Resumo:
In this paper, the presynaptic rule, a classical rule for hebbian learning, is revisited. It is shown that the presynaptic rule exhibits relevant synaptic properties like synaptic directionality, and LTP metaplasticity (long-term potentiation threshold metaplasticity). With slight modifications, the presynaptic model also exhibits metaplasticity of the long-term depression threshold, being also consistent with Artola, Brocher and Singer’s (ABS) influential model. Two asymptotically equivalent versions of the presynaptic rule were adopted for this analysis: the first one uses an incremental equation while the second, conditional probabilities. Despite their simplicity, both types of presynaptic rules exhibit sophisticated biological properties, specially the probabilistic version
Resumo:
A Probabilistic Safety Assessment (PSA) is being developed for a steam-methane reforming hydrogen production plant linked to a High-Temperature Gas Cooled Nuclear Reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute’s (JAERI) High Temperature Test Reactor (HTTR) prototype in Japan. This study has two major objectives: calculate the risk to onsite and offsite individuals, and calculate the frequency of different types of damage to the complex. A simplified HAZOP study was performed to identify initiating events, based on existing studies. The initiating events presented here are methane pipe break, helium pipe break, and PPWC heat exchanger pipe break. Generic data was used for the fault tree analysis and the initiating event frequency. Saphire was used for the PSA analysis. The results show that the average frequency of an accident at this complex is 2.5E-06, which is divided into the various end states. The dominant sequences result in graphite oxidation which does not pose a health risk to the population. The dominant sequences that could affect the population are those that result in a methane explosion and occur 6.6E-8/year, while the other sequences are much less frequent. The health risk presents itself if there are people in the vicinity who could be affected by the explosion. This analysis also demonstrates that an accident in one of the plants has little effect on the other. This is true given the design base distance between the plants, the fact that the reactor is underground, as well as other safety characteristics of the HTGR. Sensitivity studies are being performed in order to determine where additional and improved data is needed.
Resumo:
The selection of predefined analytic grids (partitions of the numeric ranges) to represent input and output functions as histograms has been proposed as a mechanism of approximation in order to control the tradeoff between accuracy and computation times in several áreas ranging from simulation to constraint solving. In particular, the application of interval methods for probabilistic function characterization has been shown to have advantages over other methods based on the simulation of random samples. However, standard interval arithmetic has always been used for the computation steps. In this paper, we introduce an alternative approximate arithmetic aimed at controlling the cost of the interval operations. Its distinctive feature is that grids are taken into account by the operators. We apply the technique in the context of probability density functions in order to improve the accuracy of the probability estimates. Results show that this approach has advantages over existing approaches in some particular situations, although computation times tend to increase significantly when analyzing large functions.
Resumo:
La mayor parte de los entornos diseñados por el hombre presentan características geométricas específicas. En ellos es frecuente encontrar formas poligonales, rectangulares, circulares . . . con una serie de relaciones típicas entre distintos elementos del entorno. Introducir este tipo de conocimiento en el proceso de construcción de mapas de un robot móvil puede mejorar notablemente la calidad y la precisión de los mapas resultantes. También puede hacerlos más útiles de cara a un razonamiento de más alto nivel. Cuando la construcción de mapas se formula en un marco probabilístico Bayesiano, una especificación completa del problema requiere considerar cierta información a priori sobre el tipo de entorno. El conocimiento previo puede aplicarse de varias maneras, en esta tesis se presentan dos marcos diferentes: uno basado en el uso de primitivas geométricas y otro que emplea un método de representación cercano al espacio de las medidas brutas. Un enfoque basado en características geométricas supone implícitamente imponer un cierto modelo a priori para el entorno. En este sentido, el desarrollo de una solución al problema SLAM mediante la optimización de un grafo de características geométricas constituye un primer paso hacia nuevos métodos de construcción de mapas en entornos estructurados. En el primero de los dos marcos propuestos, el sistema deduce la información a priori a aplicar en cada caso en base a una extensa colección de posibles modelos geométricos genéricos, siguiendo un método de Maximización de la Esperanza para hallar la estructura y el mapa más probables. La representación de la estructura del entorno se basa en un enfoque jerárquico, con diferentes niveles de abstracción para los distintos elementos geométricos que puedan describirlo. Se llevaron a cabo diversos experimentos para mostrar la versatilidad y el buen funcionamiento del método propuesto. En el segundo marco, el usuario puede definir diferentes modelos de estructura para el entorno mediante grupos de restricciones y energías locales entre puntos vecinos de un conjunto de datos del mismo. El grupo de restricciones que se aplica a cada grupo de puntos depende de la topología, que es inferida por el propio sistema. De este modo, se pueden incorporar nuevos modelos genéricos de estructura para el entorno con gran flexibilidad y facilidad. Se realizaron distintos experimentos para demostrar la flexibilidad y los buenos resultados del enfoque propuesto. Abstract Most human designed environments present specific geometrical characteristics. In them, it is easy to find polygonal, rectangular and circular shapes, with a series of typical relations between different elements of the environment. Introducing this kind of knowledge in the mapping process of mobile robots can notably improve the quality and accuracy of the resulting maps. It can also make them more suitable for higher level reasoning applications. When mapping is formulated in a Bayesian probabilistic framework, a complete specification of the problem requires considering a prior for the environment. The prior over the structure of the environment can be applied in several ways; this dissertation presents two different frameworks, one using a feature based approach and another one employing a dense representation close to the measurements space. A feature based approach implicitly imposes a prior for the environment. In this sense, feature based graph SLAM was a first step towards a new mapping solution for structured scenarios. In the first framework, the prior is inferred by the system from a wide collection of feature based priors, following an Expectation-Maximization approach to obtain the most probable structure and the most probable map. The representation of the structure of the environment is based on a hierarchical model with different levels of abstraction for the geometrical elements describing it. Various experiments were conducted to show the versatility and the good performance of the proposed method. In the second framework, different priors can be defined by the user as sets of local constraints and energies for consecutive points in a range scan from a given environment. The set of constraints applied to each group of points depends on the topology, which is inferred by the system. This way, flexible and generic priors can be incorporated very easily. Several tests were carried out to demonstrate the flexibility and the good results of the proposed approach.
Resumo:
Opportunities offered by high performance computing provide a significant degree of promise in the enhancement of the performance of real-time flood forecasting systems. In this paper, a real-time framework for probabilistic flood forecasting through data assimilation is presented. The distributed rainfall-runoff real-time interactive basin simulator (RIBS) model is selected to simulate the hydrological process in the basin. Although the RIBS model is deterministic, it is run in a probabilistic way through the results of calibration developed in a previous work performed by the authors that identifies the probability distribution functions that best characterise the most relevant model parameters. Adaptive techniques improve the result of flood forecasts because the model can be adapted to observations in real time as new information is available. The new adaptive forecast model based on genetic programming as a data assimilation technique is compared with the previously developed flood forecast model based on the calibration results. Both models are probabilistic as they generate an ensemble of hydrographs, taking the different uncertainties inherent in any forecast process into account. The Manzanares River basin was selected as a case study, with the process being computationally intensive as it requires simulation of many replicas of the ensemble in real time.
Resumo:
In this work, the algebraic properties of the local transition functions of elementary cellular automata (ECA) were analysed. Specifically, a classification of such cellular automata was done according to their algebraic degree, the balancedness, the resiliency, nonlinearity, the propagation criterion and the existence of non-zero linear structures. It is shown that there is not any ECA satisfying all properties at the same time.
Resumo:
Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms.
Resumo:
Esta tesis realiza una contribución metodológica al problema de la gestión óptima de embalses hidroeléctricos durante eventos de avenidas, considerando un enfoque estocástico y multiobjetivo. Para ello se propone una metodología de evaluación de estrategias de laminación en un contexto probabilístico y multiobjetivo. Además se desarrolla un entorno dinámico de laminación en tiempo real con pronósticos que combina un modelo de optimización y algoritmos de simulación. Estas herramientas asisten a los gestores de las presas en la toma de decisión respecto de cuál es la operación más adecuada del embalse. Luego de una detallada revisión de la bibliografía, se observó que los trabajos en el ámbito de la gestión óptima de embalses en avenidas utilizan, en general, un número reducido de series de caudales o hidrogramas para caracterizar los posibles escenarios. Limitando el funcionamiento satisfactorio de un modelo determinado a situaciones hidrológicas similares. Por otra parte, la mayoría de estudios disponibles en este ámbito abordan el problema de la laminación en embalses multipropósito durante la temporada de avenidas, con varios meses de duración. Estas características difieren de la realidad de la gestión de embalses en España. Con los avances computacionales en materia de gestión de información en tiempo real, se observó una tendencia a la implementación de herramientas de operación en tiempo real con pronósticos para determinar la operación a corto plazo (involucrando el control de avenidas). La metodología de evaluación de estrategias propuesta en esta tesis se basa en determinar el comportamiento de éstas frente a un espectro de avenidas características de la solicitación hidrológica. Con ese fin, se combina un sistema de evaluación mediante indicadores y un entorno de generación estocástica de avenidas, obteniéndose un sistema implícitamente estocástico. El sistema de evaluación consta de tres etapas: caracterización, síntesis y comparación, a fin de poder manejar la compleja estructura de datos resultante y realizar la evaluación. En la primera etapa se definen variables de caracterización, vinculadas a los aspectos que se quieren evaluar (seguridad de la presa, control de inundaciones, generación de energía, etc.). Estas variables caracterizan el comportamiento del modelo para un aspecto y evento determinado. En la segunda etapa, la información de estas variables se sintetiza en un conjunto de indicadores, lo más reducido posible. Finalmente, la comparación se lleva a cabo a partir de la comparación de esos indicadores, bien sea mediante la agregación de dichos objetivos en un indicador único, o bien mediante la aplicación del criterio de dominancia de Pareto obteniéndose un conjunto de soluciones aptas. Esta metodología se aplicó para calibrar los parámetros de un modelo de optimización de embalse en laminación y su comparación con otra regla de operación, mediante el enfoque por agregación. Luego se amplió la metodología para evaluar y comparar reglas de operación existentes para el control de avenidas en embalses hidroeléctricos, utilizando el criterio de dominancia. La versatilidad de la metodología permite otras aplicaciones, tales como la determinación de niveles o volúmenes de seguridad, o la selección de las dimensiones del aliviadero entre varias alternativas. Por su parte, el entorno dinámico de laminación al presentar un enfoque combinado de optimización-simulación, permite aprovechar las ventajas de ambos tipos de modelos, facilitando la interacción con los operadores de las presas. Se mejoran los resultados respecto de los obtenidos con una regla de operación reactiva, aun cuando los pronósticos se desvían considerablemente del hidrograma real. Esto contribuye a reducir la tan mencionada brecha entre el desarrollo teórico y la aplicación práctica asociada a los modelos de gestión óptima de embalses. This thesis presents a methodological contribution to address the problem about how to operate a hydropower reservoir during floods in order to achieve an optimal management considering a multiobjective and stochastic approach. A methodology is proposed to assess the flood control strategies in a multiobjective and probabilistic framework. Additionally, a dynamic flood control environ was developed for real-time operation, including forecasts. This dynamic platform combines simulation and optimization models. These tools may assist to dam managers in the decision making process, regarding the most appropriate reservoir operation to be implemented. After a detailed review of the bibliography, it was observed that most of the existing studies in the sphere of flood control reservoir operation consider a reduce number of hydrographs to characterize the reservoir inflows. Consequently, the adequate functioning of a certain strategy may be limited to similar hydrologic scenarios. In the other hand, most of the works in this context tackle the problem of multipurpose flood control operation considering the entire flood season, lasting some months. These considerations differ from the real necessity in the Spanish context. The implementation of real-time reservoir operation is gaining popularity due to computational advances and improvements in real-time data management. The methodology proposed in this thesis for assessing the strategies is based on determining their behavior for a wide range of floods, which are representative of the hydrological forcing of the dam. An evaluation algorithm is combined with a stochastic flood generation system to obtain an implicit stochastic analysis framework. The evaluation system consists in three stages: characterizing, synthesizing and comparing, in order to handle the complex structure of results and, finally, conduct the evaluation process. In the first stage some characterization variables are defined. These variables should be related to the different aspects to be evaluated (such as dam safety, flood protection, hydropower, etc.). Each of these variables characterizes the behavior of a certain operating strategy for a given aspect and event. In the second stage this information is synthesized obtaining a reduced group of indicators or objective functions. Finally, the indicators are compared by means of an aggregated approach or by a dominance criterion approach. In the first case, a single optimum solution may be achieved. However in the second case, a set of good solutions is obtained. This methodology was applied for calibrating the parameters of a flood control model and to compare it with other operating policy, using an aggregated method. After that, the methodology was extent to assess and compared some existing hydropower reservoir flood control operation, considering the Pareto approach. The versatility of the method allows many other applications, such as determining the safety levels, defining the spillways characteristics, among others. The dynamic framework for flood control combines optimization and simulation models, exploiting the advantages of both techniques. This facilitates the interaction between dam operators and the model. Improvements are obtained applying this system when compared with a reactive operating policy, even if the forecasts deviate significantly from the observed hydrograph. This approach contributes to reduce the gap between the theoretical development in the field of reservoir management and its practical applications.
Resumo:
Estudio de la dinámica de una población donde los individuos son contribuyentes (pagadores de impuestos) o no mediante un autómata celular 2D