5 resultados para Railway Level Crossings

em Universidad Politécnica de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

En el campo del ferrocarril es necesaria tecnología avanzada que ayude en la seguridad de los trenes y de los pasajeros, en caso de viajes comerciales. Para ello en los pasos a nivel es necesario tener mecanismos que detallen cualquier incidencia, o cualquier anomalía respecto a las vías, bajadas de vayas, etc. Aquí toma vida esta aplicación llamada SCSE (Sistema Supervisor Central de Eventos en Entorno Ferroviario), que ofrece una cantidad importante de información. Esta aplicación recoge en el momento toda la información de los distintos pasos a nivel; y nos dice dónde está fallando el paso, si hay un error en la subida/bajada de vayas, si el semáforo no ha cambiado de color a tiempo... y lo hace visual en la pantalla. Con esta aplicación se pretende ofrecer una mayor eficacia en seguridad, una mayor rapidez en reparación de incidencias y una organización dentro de la empresa para poder ver sobre que se está trabajando.---ABSTRACT---In the field of rail technology is needed to assist in the safety of trains and passengers in case of commercial travel. To do this on level crossings is necessary to have mechanisms that detail any incident or any matter relating to rails etc. Here comes alive this application called SCSE (Central Events Supervisor System Environment Railway), which provides a significant amount of information. This application collects in the moment all the information of the different level crossings; and it tells us where it is failing level crossing, if there is an error in the up / down, if the light has not changed color in time ... and makes visual on the screen. With this application is intended to provide more effective security, a faster repair incidents and organization inside the company to see on which they are working.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pressure wave is generated when a high speed train enters a tunnel. This wave travels along the tunnel back and forth, and is reflected at the irregularities of the tunnel duct (section changes, chimneys and tunnel ends). The pressure changes are associated to these waves can have an effect on passengers if the trains are not suitably sealed or pressurized. The intensity of the waves depends mainly on the train speed, and on the blockage ratio (train-section-to- tunnel-section area ratio). As the intensity of the waves is limited by regulations, and also by the effects on passengers and infrastructures, the sizing of the tunnel section area is largely influenced by the maximum train speed allowed in the tunnel. The aim of this study is to analyse the increase in cost in a tunnel due to the existence of this difference in ground level, and evaluate the increase of construction costs that this elevation might involve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal risks in the railway industry are mainly associated with collisions, derailments and level crossing accidents. An understanding of the nature of previous accidents on the railway network is required to identify potential causes and develop safety systems and deploy safety procedures. Risk assessment is a process for determining the risk magnitude to assist with decision-making. We propose a three-step methodology to predict the mean number of fatalities in railway accidents. The first is to predict the mean number of accidents by analyzing generalized linear models and selecting the one that best fits to the available historical data on the basis of goodness-offit statistics. The second is to compute the mean number of fatalities per accident and the third is to estimate the mean number of fatalities. The methodology is illustrated on the Spanish railway system. Statistical models accounting for annual and grouped data for the 1992-2009 time period have been analyzed. After identifying the models for broad and narrow gauges, we predicted mean number of accidents and the number of fatalities for the 2010-18 time period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the main challenges associated with the migration process towards LTE, will be assessed. These challenges comprise, among others, the next key topics: Reliability, Availability Maintainability and Safety (RAMS) requirements, end to end Quality of Service (QoS) requirements, system performance in high speed scenarios, communication system deployment strategy, and system backward compatibility as well as the future system features for delivering railway services. The practical evaluation of the LTE system capabilities and performance in High Speed Railway (HSR) scenarios, require the development of an LTE demonstrator and an LTE system level simulator. Under this scope, the authors have developed an RF LTE demonstrator, as well as an LTE system level simulator, that will provide valuable information for the assessing of LTE performance and suitability in real HSR scenarios. This work is being developed under the framework of a research project to evaluate the feasibility of LTE to become the new railway communication system. The companies and universities involved in this project are: Technical University of Madrid (UPM), Alcatel Lucent Spain, ADIF (Spanish Railway Infrastructure Manager), Metro de Madrid, AT4 Wireless, the University of A Coruña (UDC) and University of Málaga (UMA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of the present conference paper culverts are defined as an opening or conduit passing through an embankment usually for the purpose of conveying water or providing safe pedestrian and animal crossings under rail infrastructure. The clear opening of culverts may reach values of up to 12m however, values around 3m are encountered much more frequently. Depending on the topography, the number of culverts is about 10 times that of bridges. In spite of this, their dynamic behavior has received far less attention than that of bridges. The fundamental frequency of culverts is considerably higher than that of bridges even in the case of short span bridges. As the operational speed of modern high-speed passenger rail systems rises, higher frequencies are excited and thus more energy is encountered in frequency bands where the fundamental frequency of box culverts is located. Many research efforts have been spent on the subject of ballast instability due to bridge resonance, since it was first observed when high-speed trains were introduced to the Paris/Lyon rail line. To prevent this phenomenon from occurring, design codes establish a limit value for the vertical deck acceleration. Obviously one needs some sort of numerical model in order to estimate this acceleration level and at that point things get quite complicated. Not only acceleration but also displacement values are of interest e.g. to estimate the impact factor. According to design manuals the structural design should consider the depth of cover, trench width and condition, bedding type, backfill material, and compaction. The same applies to the numerical model however, the question is: What type of model is appropriate for this job? A 3D model including the embankment and an important part of the soil underneath the culvert is computationally very expensive and hard to justify taking into account the associated costs. Consequently, there is a clear need for simplified models and design rules in order to achieve reasonable costs. This paper will describe the results obtained from a 2D finite element model which has been calibrated by means of a 3D model and experimental data obtained at culverts that belong to the high-speed railway line that links the two towns of Segovia and Valladolid in Spain