10 resultados para Radon.
em Universidad Politécnica de Madrid
Resumo:
C0 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic co2 into the atmosphere. CCS technologies are expected to account for the 20% of the C0 reduction by 2050.The results of this paper are referred to the OXYCFB300 Compostilla Project (European Energy Program for Recover). Since the detection and control of potential leakage from storage formation is mandatory in a project of capture and geological storage of C02 (CCS), geophysical , ground deformation and geochemical monitoring have been carried out to detect potentialleakage, and, in the event that this occurs, identify and quantify it. This monitoring needs to be developed prior, during and after the injection stage. For a correct interpretation and quantification of the leakage, it is essential to establish a pre-injection characterization (baseline)of the area affected by the C02 storage at reservoir level as well as at shallow depth, surface and atmosphere, via soil gas measurements.
Resumo:
Activity of radon gas in natural soils is commonly low (in the order of few thousands of Bq·m-3) due to the fast decay (half-life= 3.8 days in the case of 222Rn) that prevents accumulation in soil pores. Exceptionally, high Rn soil activity (up to 430 KBq·m-3) is found around point sources of deep CO2 fluxes. These fluxes allow the transport of trace gases (including Rn) to long distances in the geosphere leading to a potential hazard as Rn accumulation in buildings. CO2 degassing is common in active or ancient volcanic fields and occurs as free gas fluxes or dissolved in groundwater. In this work, the occurrence of Rnbearing, CO2 fluxes from the Campo de Calatrava region in Central Spain has been studied in order to determine their (1) magnitude, (2) migration paths and (3) potential impact on the environment, and (4) methodologies to best detection and measurement.
Resumo:
Las técnicas SAR (Synthetic Aperture Radar, radar de apertura sintética) e ISAR (Inverse SAR, SAR inverso) son sistemas radar coherentes de alta resolución, capaces de proporcionar un mapa de la sección radar del blanco en el dominio espacial de distancia y acimut. El objetivo de ambas técnicas radica en conseguir una resolución acimutal más fina generando una apertura sintética a partir del movimiento relativo entre radar y blanco. Los radares imagen complementan la labor de los sistemas ópticos e infrarrojos convencionales, especialmente en condiciones meteorológicas adversas. Los sistemas SAR e ISAR convencionales se diseñan para iluminar blancos en situaciones de línea de vista entre sensor y blanco. Por este motivo, presentan un menor rendimiento en escenarios complejos, como por ejemplo en bosques o entornos urbanos, donde los retornos multitrayecto se superponen a los ecos directos procedentes de los blancos. Se conocen como "imágenes fantasma", puesto que enmascaran a los verdaderos blancos y dan lugar a una calidad visual pobre, complicando en gran medida la detección del blanco. El problema de la mitigación del multitrayecto en imágenes radar adquiere una relevancia teórica y práctica. En esta Tesis Doctoral, se hace uso del concepto de inversión temporal (Time Reversal, TR) para mejorar la calidad visual de las imágenes SAR e ISAR eliminando las "imágenes fantasma" originadas por la propagación multitrayecto (algoritmos TR-SAR y TR-ISAR, respectivamente). No obstante, previamente a la aplicación de estas innovadoras técnicas de mitigación del multi-trayecto, es necesario resolver el problema geométrico asociado al multitrayecto. Centrando la atención en la mejora de las prestaciones de TR-ISAR, se implementan una serie de técnicas de procesado de señal avanzadas antes y después de la etapa basada en inversión temporal (el eje central de esta Tesis). Las primeras (técnicas de pre-procesado) están relacionadas con el multilook averaging, las transformadas tiempo-frecuencia y la transformada de Radon, mientras que las segundas (técnicas de post-procesado) se componen de un conjunto de algoritmos de superresolución. En pocas palabras, todas ellas pueden verse como un valor añadido al concepto de TR, en lugar de ser consideradas como técnicas independientes. En resumen, la utilización del algoritmo diseñado basado en inversión temporal, junto con algunas de las técnicas de procesado de señal propuestas, no deben obviarse si se desean obtener imágenes ISAR de gran calidad en escenarios con mucho multitrayecto. De hecho, las imágenes resultantes pueden ser útiles para posteriores esquemas de reconocimiento automático de blancos (Automatic Target Recognition, ATR). Como prueba de concepto, se hace uso tanto de datos simulados como experimentales obtenidos a partir de radares de alta resolución con el fin de verificar los métodos propuestos.
Resumo:
La Fundación Ciudad de la Energía (CIUDEN) está desarrollando un proyecto de almacenamiento geológico de CO2. El área seleccionada para la colocación de la planta piloto de desarrollo tecnológico se encuentra en las proximidades de la localidad de Hontomín (Burgos, España). Dentro de los objetivos de este proyecto se encuentra el desarrollo y puesta a punto de una metodología no intrusiva/invasiva que permita mejorar el conocimiento de formaciones geológicas a partir del registro en superficie de la emisión de gases de origen natural. Para cumplir con parte de este objetivo, se ha realizado un estudio de los flujos y de la relación entre las actividades de radón (222Rn) y torón (220Rn) asociados a flujos altos de CO2. El área de estudio se encuentra en la zona volcánica de Campo de Calatrava de la provincia de Ciudad Real en España. Dado que los flujos muy altos (566 a 2011 g/m2•dia) de CO2 son puntuales en el emplazamiento de estudio, éstos podrían equipararse a escapes puntuales en zonas de debilidad de un almacenamiento comercial de CO2. Los resultados obtenidos indican que los flujos altos de CO2 conllevan actividades muy altas de 222Rn (118398 Bq/m3), y altas relaciones radón-torón, ya que se observa una disminución de las concentraciones de torón. Abstract The Fundación Ciudad de la Energía (CIUDEN) is presently developing a project of geological storage of CO2. The selected area is close to Hontomín town (Burgos, Spain). One of the aim objectives of this project is the development and testing of a non-intrusive/invasive methodology to improve our knowledge of geological formations from the surface record of the emission of soil gas. To meet part of this goal, a survey of 222Rn and 220Rn measurements has been performed at a site called La Sima, located in volcanic area of Campo de Calatrava (Ciudad Real, Spain) which is characterized by high fluxes of CO2 (566 a 2011 g/m2•dia). These high, point-source fluxes can be considered as analogues of potential leakages in commercial storages. The obtained results show a clear correlation between high flux of CO2 and very high activities of 222Rn (118398 Bq/m3). In contrast, activity of 220Rn is significantly low and consequently high ratios of radon-thoron are measured.
Resumo:
CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. Geophysical, ground deformation and geochemical monitoring have been carried out to detect potential leakage, and, in the event that this occurs, identify and quantify it. This monitoring needs to be developed prior, during and after the injection stage. For a correct interpretation and quantification of the leakage, it is essential to establish a pre-injection characterization (baseline) of the area affected by the CO2 storage at reservoir level as well as at shallow depth, surface and atmosphere, via soil gas measurements. Therefore, the methodological approach is important because it can affect the spatial and temporal variability of this flux and even jeopardize the total value of CO2 in a given area. In this sense, measurements of CO2 flux were done using portable infrared analyzers (i.e., accumulation chambers) adapted to monitoring the geological storage of CO2, and other measurements of trace gases, e.g. radon isotopes and remote sensing imagery were tested in the natural analogue of Campo de Calatrava (Ciudad Real, Spain) with the aim to apply in CO2 leakage detection; thus, observing a high correlation between CO2 and radon (r=0,858) and detecting some vegetation indices that may be successfully applied for the leakage detection.
Resumo:
El trabajo de investigación desarrollado que ha dado lugar a la realización de esta Tesis, aborda la protección de los edificios frente a la entrada de gas radón y su acumulación en los espacios habitados. Dicho gas (isótopo del radón Rn-222) es un elemento radiactivo que se genera, principalmente, en terrenos con altos contenidos de radio (terrenos graníticos por ejemplo). Su alto grado de movilidad permite que penetre en los edificios a través de los materiales de cerramiento del mismo (porosidad de los materiales, fisuras, grietas y juntas) y se acumule en su interior, donde puede ser inhalado en altas concentraciones. La Organización Mundial de la Salud, califica al radón como agente cancerígeno de grado 1. Según este Organismo, el radón es la segunda causa de contracción de cáncer pulmonar detrás del tabaco. Como respuesta a esta alarma, distintos estados ya han elaborado normativas en las que se proponen soluciones para que los niveles de concentración de radón no superen los valores recomendados por los organismos internacionales responsables de la protección radiológica. En España aún no existe normativa de protección frente a este agente cancerígeno causante de numerosas muertes, y es por tal motivo evidente la necesidad de aportar documentación técnica que ayude a las administraciones nacionales y locales a desarrollar dicha normativa para ajustarse a las recomendaciones europeas e internacionales sobre los niveles que no se deben superar y que, por otro lado, ya han contemplado una gran cantidad de países. Como principal aportación de este trabajo se muestran los resultados de reducción de concentración de gas radón de distintas soluciones constructivas enfocadas a frenar la entrada de gas radón al interior de los edificios haciendo uso de técnicas y materiales habituales en el ámbito de la construcción en España. Para ello, se han estudiado las efectividades de dichas soluciones, en lo referente a su capacidad para frenar la inmisión de radón, en un prototipo de vivienda construido al efecto en un terreno con altas concentraciones de radón. Las soluciones propuestas y ensayadas han sido el resultado de una labor de optimización de los sistemas estudiados en la bibliografía con el fin de adaptar las técnicas a los sistemas constructivos habituales en España y en concreto a la situación real del prototipo de vivienda construido en un lugar con contenidos de radón en terreno muy elevados. El trabajo incluye un capítulo inicial con los conceptos básicos necesarios para entender la problemática que supone habitar en espacios con altos contenidos de radón. ABSTRACT The research developed, which has led to the completion of this thesis, deal with the protection of buildings against entry of radon gas and its accumulation in the ocupated spaces. This gas (radon isotope Rn-222) is a radioactive element generated, mainly, in areas with high levels of radio (granitic terrain for example). Its high mobility allows entering in buildings through the enclosure materials of it (porosity of materials, cracks, crevices and joints) and accumulates inside, where it can be inhaled in high concentrations. The World Health Organization describes radon gas as a carcinogen agent in level 1. According to this Agency, radon is the second leading cause of lung cancer behind tobacco. In response to this alarm, some states have developed regulations that propose solutions to reduce radon concentration levels for not exceeding the values recommended by international agencies responsible in radiation protection. In Spain there is still no legislation to protect against this carcinogen element that cause numerous deaths, and for that reason it is evident the need to provide technical documentation to help the national and local governments to develop legislation for reaching the European and international levels recommendations. As the main contribution of this work are the results of reducing radon concentration using different constructive solutions aimed to stop radon entry in buildings, with techniques and materials common in Spain. To do this, effectiveness of such solutions, have been studied in terms of its ability to stop radon entry in a housing prototype built for this purpose in an area with high radon levels. The solutions proposed and tested have been the result of a process of optimization of systems studied in the literature in order to adapt the techniques to Spanish building material and, specifically, to the actual situation of housing prototype built in a place with high contents of radon in soil. The work includes an initial chapter with the basic concepts needed to understand the problem of living in areas with high levels of radon.
Resumo:
La Universidad Politécnica de Madrid (UPM) y la Università degli Studi di Firenze (UniFi), bajo la coordinación técnica de AMPHOS21, participan desde 2009 en el proyecto de investigación “Estrategias de Monitorización de CO2 y otros gases en el estudio de Análogos Naturales”, financiado por la Fundación Ciudad de la Energía (CIUDEN) en el marco del Proyecto Compostilla OXYCFB300 (http://www.compostillaproject.eu), del Programa “European Energy Program for Recovery - EEPR”. El objetivo principal del proyecto fue el desarrollo y puesta a punto de metodologías de monitorización superficiales para su aplicación en el seguimiento y control de los emplazamientos donde se realice el almacenamiento geológico de CO2, analizando técnicas que permitan detectar y cuantificar las posibles fugas de CO2 a la atmósfera. Los trabajos se realizaron tanto en análogos naturales (españoles e italianos) como en la Planta de Desarrollo Tecnológico de Almacenamiento de CO2 de Hontomín. Las técnicas analizadas se centran en la medición de gases y aguas superficiales (de escorrentía y manantiales). En cuanto a la medición de gases se analizó el flujo de CO2 que emana desde el suelo a la atmósfera y la aplicabilidad de trazadores naturales (como el radón) para la detección e identificación de las fugas de CO2. En cuanto al análisis químico de las aguas se analizaron los datos geoquímicos e isotópicos y los gases disueltos en las aguas de los alrededores de la PDT de Hontomín, con objeto de determinar qué parámetros son los más apropiados para la detección de una posible migración del CO2 inyectado, o de la salmuera, a los ambientes superficiales. Las medidas de flujo de CO2 se realizaron con la técnica de la cámara de acúmulo. A pesar de ser una técnica desarrollada y aplicada en diferentes ámbitos científicos se estimó necesario adaptar un protocolo de medida y de análisis de datos a las características específicas de los proyectos de captura y almacenamiento de CO2 (CAC). Donde los flujos de CO2 esperados son bajos y en caso de producirse una fuga habrá que detectar pequeñas variaciones en los valores flujo con un “ruido” en la señal alto, debido a actividad biológica en el suelo. La medida de flujo de CO2 mediante la técnica de la cámara de acúmulo se puede realizar sin limpiar la superficie donde se coloca la cámara o limpiando y esperando al reequilibrio del flujo después de la distorsión al sistema. Sin embargo, los resultados obtenidos después de limpiar y esperar muestran menor dispersión, lo que nos indica que este procedimiento es el mejor para la monitorización de los complejos de almacenamiento geológico de CO2. El protocolo de medida resultante, utilizado para la obtención de la línea base de flujo de CO2 en Hontomín, sigue los siguiente pasos: a) con una espátula se prepara el punto de medición limpiando y retirando el recubrimiento vegetal o la primera capa compacta de suelo, b) se espera un tiempo para la realización de la medida de flujo, facilitando el reequilibrio del flujo del gas tras la alteración provocada en el suelo y c) se realiza la medida de flujo de CO2. Una vez realizada la medición de flujo de CO2, y detectada si existen zonas de anomalías, se debe estimar la cantidad de CO2 que se está escapando a la atmósfera (emanación total), con el objetivo de cuantificar la posible fuga. Existen un amplio rango de metodologías para realizar dicha estimación, siendo necesario entender cuáles son las más apropiadas para obtener el valor más representativo del sistema. En esta tesis se comparan seis técnicas estadísticas: media aritmética, estimador insegado de la media (aplicando la función de Sichel), remuestreo con reemplazamiento (bootstrap), separación en diferentes poblaciones mediante métodos gráficos y métodos basados en criterios de máxima verosimilitud, y la simulación Gaussiana secuencial. Para este análisis se realizaron ocho campañas de muestreo, tanto en la Planta de Desarrollo Tecnológico de Hontomón como en análogos naturales (italianos y españoles). Los resultados muestran que la simulación Gaussiana secuencial suele ser el método más preciso para realizar el cálculo, sin embargo, existen ocasiones donde otros métodos son más apropiados. Como consecuencia, se desarrolla un procedimiento de actuación para seleccionar el método que proporcione el mejor estimador. Este procedimiento consiste, en primer lugar, en realizar un análisis variográfico. Si existe una autocorrelación entre los datos, modelizada mediante el variograma, la mejor técnica para calcular la emanación total y su intervalo de confianza es la simulación Gaussiana secuencial (sGs). Si los datos son independientes se debe comprobar la distribución muestral, aplicando la media aritmética o el estimador insesgado de la media (Sichel) para datos normales o lognormales respectivamente. Cuando los datos no son normales o corresponden a una mezcla de poblaciones la mejor técnica de estimación es la de remuestreo con reemplazamiento (bootstrap). Siguiendo este procedimiento el máximo valor del intervalo de confianza estuvo en el orden del ±20/25%, con la mayoría de valores comprendidos entre ±3,5% y ±8%. La identificación de las diferentes poblaciones muestrales en los datos de flujo de CO2 puede ayudar a interpretar los resultados obtenidos, toda vez que esta distribución se ve afectada por la presencia de varios procesos geoquímicos como, por ejemplo, una fuente geológica o biológica del CO2. Así pues, este análisis puede ser una herramienta útil en el programa de monitorización, donde el principal objetivo es demostrar que no hay fugas desde el reservorio a la atmósfera y, si ocurren, detectarlas y cuantificarlas. Los resultados obtenidos muestran que el mejor proceso para realizar la separación de poblaciones está basado en criterios de máxima verosimilitud. Los procedimientos gráficos, aunque existen pautas para realizarlos, tienen un cierto grado de subjetividad en la interpretación de manera que los resultados son menos reproducibles. Durante el desarrollo de la tesis se analizó, en análogos naturales, la relación existente entre el CO2 y los isótopos del radón (222Rn y 220Rn), detectándose en todas las zonas de emisión de CO2 una relación positiva entre los valores de concentración de 222Rn en aire del suelo y el flujo de CO2. Comparando la concentración de 220Rn con el flujo de CO2 la relación no es tan clara, mientras que en algunos casos aumenta en otros se detecta una disminución, hecho que parece estar relacionado con la profundidad de origen del radón. Estos resultados confirmarían la posible aplicación de los isótopos del radón como trazadores del origen de los gases y su aplicación en la detección de fugas. Con respecto a la determinación de la línea base de flujo CO2 en la PDT de Hontomín, se realizaron mediciones con la cámara de acúmulo en las proximidades de los sondeos petrolíferos, perforados en los ochenta y denominados H-1, H-2, H-3 y H-4, en la zona donde se instalarán el sondeo de inyección (H-I) y el de monitorización (H-A) y en las proximidades de la falla sur. Desde noviembre de 2009 a abril de 2011 se realizaron siete campañas de muestreo, adquiriéndose más de 4.000 registros de flujo de CO2 con los que se determinó la línea base y su variación estacional. Los valores obtenidos fueron bajos (valores medios entre 5 y 13 g•m-2•d-1), detectándose pocos valores anómalos, principalmente en las proximidades del sondeo H-2. Sin embargo, estos valores no se pudieron asociar a una fuente profunda del CO2 y seguramente estuvieran más relacionados con procesos biológicos, como la respiración del suelo. No se detectaron valores anómalos cerca del sistema de fracturación (falla Ubierna), toda vez que en esta zona los valores de flujo son tan bajos como en el resto de puntos de muestreo. En este sentido, los valores de flujo de CO2 aparentemente están controlados por la actividad biológica, corroborado al obtenerse los menores valores durante los meses de otoño-invierno e ir aumentando en los periodos cálidos. Se calcularon dos grupos de valores de referencia, el primer grupo (UCL50) es 5 g•m-2•d-1 en las zonas no aradas en los meses de otoño-invierno y 3,5 y 12 g•m-2•d-1 en primavera-verano para zonas aradas y no aradas, respectivamente. El segundo grupo (UCL99) corresponde a 26 g•m-2•d- 1 durante los meses de otoño-invierno en las zonas no aradas y 34 y 42 g•m-2•d-1 para los meses de primavera-verano en zonas aradas y no aradas, respectivamente. Flujos mayores a estos valores de referencia podrían ser indicativos de una posible fuga durante la inyección y posterior a la misma. Los primeros datos geoquímicos e isotópicos de las aguas superficiales (de escorrentía y de manantiales) en el área de Hontomín–Huermeces fueron analizados. Los datos sugieren que las aguas estudiadas están relacionadas con aguas meteóricas con un circuito hidrogeológico superficial, caracterizadas por valores de TDS relativamente bajos (menor a 800 mg/L) y una fácie hidrogeoquímica de Ca2+(Mg2+)-HCO3 −. Algunas aguas de manantiales se caracterizan por concentraciones elevadas de NO3 − (concentraciones de hasta 123 mg/l), lo que sugiere una contaminación antropogénica. Se obtuvieron concentraciones anómalas de of Cl−, SO4 2−, As, B y Ba en dos manantiales cercanos a los sondeos petrolíferos y en el rio Ubierna, estos componentes son probablemente indicadores de una posible mezcla entre los acuíferos profundos y superficiales. El estudio de los gases disueltos en las aguas también evidencia el circuito superficial de las aguas. Estando, por lo general, dominado por la componente atmosférica (N2, O2 y Ar). Sin embargo, en algunos casos el gas predominante fue el CO2 (con concentraciones que llegan al 63% v/v), aunque los valores isotópicos del carbono (<-17,7 ‰) muestran que lo más probable es que esté relacionado con un origen biológico. Los datos geoquímicos e isotópicos de las aguas superficiales obtenidos en la zona de Hontomín se pueden considerar como el valor de fondo con el que comparar durante la fase operacional, la clausura y posterior a la clausura. En este sentido, la composición de los elementos mayoritarios y traza, la composición isotópica del carbono del CO2 disuelto y del TDIC (Carbono inorgánico disuelto) y algunos elementos traza se pueden considerar como parámetros adecuados para detectar la migración del CO2 a los ambientes superficiales. ABSTRACT Since 2009, a group made up of Universidad Politécnica de Madrid (UPM; Spain) and Università degli Studi Firenze (UniFi; Italy) has been taking part in a joint project called “Strategies for Monitoring CO2 and other Gases in Natural analogues”. The group was coordinated by AMPHOS XXI, a private company established in Barcelona. The Project was financially supported by Fundación Ciudad de la Energía (CIUDEN; Spain) as a part of the EC-funded OXYCFB300 project (European Energy Program for Recovery -EEPR-; www.compostillaproject.eu). The main objectives of the project were aimed to develop and optimize analytical methodologies to be applied at the surface to Monitor and Verify the feasibility of geologically stored carbon dioxide. These techniques were oriented to detect and quantify possible CO2 leakages to the atmosphere. Several investigations were made in natural analogues from Spain and Italy and in the Tecnchnological Development Plant for CO2 injection al Hontomín (Burgos, Spain). The studying techniques were mainly focused on the measurements of diffuse soil gases and surface and shallow waters. The soil-gas measurements included the determination of CO2 flux and the application to natural trace gases (e.g. radon) that may help to detect any CO2 leakage. As far as the water chemistry is concerned, geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of the PDT of Hontomín were analyzed to determine the most suitable parameters to trace the migration of the injected CO2 into the near-surface environments. The accumulation chamber method was used to measure the diffuse emission of CO2 at the soil-atmosphere interface. Although this technique has widely been applied in different scientific areas, it was considered of the utmost importance to adapt the optimum methodology for measuring the CO2 soil flux and estimating the total CO2 output to the specific features of the site where CO2 is to be stored shortly. During the pre-injection phase CO2 fluxes are expected to be relatively low where in the intra- and post-injection phases, if leakages are to be occurring, small variation in CO2 flux might be detected when the CO2 “noise” is overcoming the biological activity of the soil (soil respiration). CO2 flux measurements by the accumulation chamber method could be performed without vegetation clearance or after vegetation clearance. However, the results obtained after clearance show less dispersion and this suggests that this procedure appears to be more suitable for monitoring CO2 Storage sites. The measurement protocol, applied for the determination of the CO2 flux baseline at Hontomín, has included the following steps: a) cleaning and removal of both the vegetal cover and top 2 cm of soil, b) waiting to reduce flux perturbation due to the soil removal and c) measuring the CO2 flux. Once completing the CO2 flux measurements and detected whether there were anomalies zones, the total CO2 output was estimated to quantify the amount of CO2 released to the atmosphere in each of the studied areas. There is a wide range of methodologies for the estimation of the CO2 output, which were applied to understand which one was the most representative. In this study six statistical methods are presented: arithmetic mean, minimum variances unbiased estimator, bootstrap resample, partitioning of data into different populations with a graphical and a maximum likelihood procedures, and sequential Gaussian simulation. Eight campaigns were carried out in the Hontomín CO2 Storage Technology Development Plant and in natural CO2 analogues. The results show that sequential Gaussian simulation is the most accurate method to estimate the total CO2 output and the confidential interval. Nevertheless, a variety of statistic methods were also used. As a consequence, an application procedure for selecting the most realistic method was developed. The first step to estimate the total emanation rate was the variogram analysis. If the relation among the data can be explained with the variogram, the best technique to calculate the total CO2 output and its confidence interval is the sequential Gaussian simulation method (sGs). If the data are independent, their distribution is to be analyzed. For normal and log-normal distribution the proper methods are the arithmetic mean and minimum variances unbiased estimator, respectively. If the data are not normal (log-normal) or are a mixture of different populations the best approach is the bootstrap resampling. According to these steps, the maximum confidence interval was about ±20/25%, with most of values between ±3.5% and ±8%. Partitioning of CO2 flux data into different populations may help to interpret the data as their distribution can be affected by different geochemical processes, e.g. geological or biological sources of CO2. Consequently, it may be an important tool in a monitoring CCS program, where the main goal is to demonstrate that there are not leakages from the reservoir to the atmosphere and, if occurring, to be able to detect and quantify it. Results show that the partitioning of populations is better performed by maximum likelihood criteria, since graphical procedures have a degree of subjectivity in the interpretation and results may not be reproducible. The relationship between CO2 flux and radon isotopes (222Rn and 220Rn) was studied in natural analogues. In all emissions zones, a positive relation between 222Rn and CO2 was observed. However, the relationship between activity of 220Rn and CO2 flux is not clear. In some cases the 220Rn activity indeed increased with the CO2 flux in other measurements a decrease was recognized. We can speculate that this effect was possibly related to the route (deep or shallow) of the radon source. These results may confirm the possible use of the radon isotopes as tracers for the gas origin and their application in the detection of leakages. With respect to the CO2 flux baseline at the TDP of Hontomín, soil flux measurements in the vicinity of oil boreholes, drilled in the eighties and named H-1 to H-4, and injection and monitoring wells were performed using an accumulation chamber. Seven surveys were carried out from November 2009 to summer 2011. More than 4,000 measurements were used to determine the baseline flux of CO2 and its seasonal variations. The measured values were relatively low (from 5 to 13 g•m-2•day-1) and few outliers were identified, mainly located close to the H-2 oil well. Nevertheless, these values cannot be associated to a deep source of CO2, being more likely related to biological processes, i.e. soil respiration. No anomalies were recognized close to the deep fault system (Ubierna Fault) detected by geophysical investigations. There, the CO2 flux is indeed as low as other measurement stations. CO2 fluxes appear to be controlled by the biological activity since the lowest values were recorded during autumn-winter seasons and they tend to increase in warm periods. Two reference CO2 flux values (UCL50 of 5 g•m-2•d-1 for non-ploughed areas in autumn-winter seasons and 3.5 and 12 g•m-2•d-1 for in ploughed and non-ploughed areas, respectively, in spring-summer time, and UCL99 of 26 g•m-2•d-1 for autumn-winter in not-ploughed areas and 34 and 42 g•m-2•d-1 for spring-summer in ploughed and not-ploughed areas, respectively, were calculated. Fluxes higher than these reference values could be indicative of possible leakage during the operational and post-closure stages of the storage project. The first geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of Hontomín–Huermeces (Burgos, Spain) are presented and discussed. The chemical and features of the spring waters suggest that they are related to a shallow hydrogeological system as the concentration of the Total Dissolved Solids approaches 800 mg/L with a Ca2+(Mg2+)-HCO3 − composition, similar to that of the surface waters. Some spring waters are characterized by relatively high concentrations of NO3 − (up to 123 mg/L), unequivocally suggesting an anthropogenic source. Anomalous concentrations of Cl−, SO4 2−, As, B and Ba were measured in two springs, discharging a few hundred meters from the oil wells, and in the Rio Ubierna. These contents are possibly indicative of mixing processes between deep and shallow aquifers. The chemistry of the dissolved gases also evidences the shallow circuits of the Hontomín– Huermeces, mainly characterized by an atmospheric source as highlighted by the contents of N2, O2, Ar and their relative ratios. Nevertheless, significant concentrations (up to 63% by vol.) of isotopically negative CO2 (<−17.7‰ V-PDB) were found in some water samples, likely related to a biogenic source. The geochemical and isotopic data of the surface and spring waters in the surroundings of Hontomín can be considered as background values when intra- and post-injection monitoring programs will be carried out. In this respect, main and minor solutes, the isotopic carbon of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) and selected trace elements can be considered as useful parameters to trace the migration of the injected CO2 into near-surface environments.
Resumo:
Natural analogs offer a valuable opportunity to investigate the long-term impacts associated with thepotential leakage in geological storage of CO2.Degassing of CO2and radon isotopes (222Rn?220Rn) from soil, gas vents and thermal water dischargeswas investigated in the natural analog of Campo de Calatrava Volcanic Field (CCVF; Central Spain) todetermine the CO2?Rn relationships and to assess the role of CO2as carrier gas for radon. Furthermore,radon measurements to discriminate between shallow and deep gas sources were evaluated under theperspective of their applicability in monitoring programs of carbon storage projects.CO2flux as high as 5000 g m?2d?1and222Rn activities up to 430 kBq m?3were measured;220Rn activi-ties were one order of magnitude lower than those of222Rn. The222Rn/220Rn ratios were used to constrainthe source of the Campo de Calatrava soil gases since a positive correlation between radon isotopic ratiosand CO2fluxes was observed. Thus, in agreement with previous studies, our results indicate a deepmantle-related origin of CO2for both free and soil gases, suggesting that carbon dioxide is an efficientcarrier for Rn. Furthermore, it was ascertained that the increase of222Rn in the soil gases was likely pro-duced by two main processes: (i) direct transport by a carrier gas, i.e., CO2and (ii) generation at shallowlevel due to the presence of relatively high concentrations of dissolved U and Ra in the thermal aquiferof Campo de Calatrava.The diffuse CO2soil flux and radon isotopic surveys carried out in the Campo de Calatrava VolcanicFields can also be applicable to geochemical monitoring programs in CCS (Carbon Capture and Storage)areas as these parameters are useful to: (i) constrain CO2leakages once detected and (ii) monitor both theevolution of the leakages and the effectiveness of subsequent remediation activities. These measurementscan also conveniently be used to detect diffuse leakages.
Resumo:
Radon gas (Rn) is a natural radioactive gas present in some soils and able to penetrate buildings through the building envelope in contact with the soil. Radon can accumulate within buildings and consequently be inhaled by their occupants. Because it is a radioactive gas, its disintegration process produces alpha particles that, in contact with the lung epithelia, can produce alterations potentially giving rise to cancer. Many international organizations related to health protection, such as WHO, confirm this causality. One way to avoid the accumulation of radon in buildings is to use the building envelope as a radon barrier. The extent to which concrete provides such a barrier is described by its radon diffusion coefficient (DRn), a parameter closely related to porosity (ɛ) and tortuosity factor (τ). The measurement of the radon diffusion coefficient presents challenges, due to the absence of standard procedures, the requirement to establish adequate airtightness in testing apparatus (referred to here as the diffusion cell), and due to the fact that measurement has to be carried out in an environment certified for use of radon calibrated sources. In addition to this calibrated radon sources are costly. The measurement of the diffusion coefficient for non-radioactive gas is less complex, but nevertheless retains a degree of difficulty due to the need to provide reliably airtight apparatus for all tests. Other parameters that can characterize and describe the process of gas transport through concrete include the permeability coefficient (K) and the electrical resistivity (ρe), both of which can be measured relatively easily with standardized procedure. The use of these parameters would simplify the characterization of concrete behaviour as a radon barrier. Although earlier studies exist, describing correlation among these parameters, there is, as has been observed in the literature, little common ground between the various research efforts. For precisely this reason, prior to any attempt to measure radon diffusion, it was deemed necessary to carry out further research in this area, as a foundation to the current work, to explore potential relationships among the following parameters: porosity-tortuosity, oxygen diffusion coefficient, permeability coefficient and resistivity. Permeability coefficient measurement (m2) presents a more straightforward challenge than diffusion coefficient measurement. Some authors identify a relationship between both coefficients, including Gaber (1988), who proposes: k= a•Dn Equation 1 Where: a=A/(8ΠD020), A = sample cross-section, D020 = diffusion coefficient in air (m2/s). Other studies (Klink et al. 1999, Gaber and Schlattner 1997, Gräf and Grube et al. 1986), experimentally relate both coefficients of different types of concrete confirming that this relationship exists, as represented by the simplified expression: k≈Dn Equation 2 In each particular study a different value for n was established, varying from 1.3 to 2.5, but this requires determination of a value for n in a more general way because these proposed models cannot estimate diffusion coefficient. If diffusion coefficient has to be measured to be able to establish n, these relationships are not interesting. The measurement of electric resistivity is easier than diffusion coefficient measurement. Correlation between the parameters can be established via Einstein´s law that relates movement of electrical charges to media conductivity according to the expression: D_e=k/ρ Equation 3 Where: De = diffusion coefficient (cm2/s), K = constant, ρ = electric resistivity (Ω•cm). The tortuosity factor is used to represent the uneven geometry of concrete pores, which are described as being not straight, but tortuous. This factor was first introduced in the literature to relate global porosity with fluid transport in a porous media, and can be formulated in a number of different ways. For example, it can take the form of equation 4 (Mason y Malinauskas), which combines molecular and Knudsen diffusion using the tortuosity factor: D=ε^τ (3/2r √(πM/8RT+1/D_0 ))^(-1) Equation 4 Where: r = medium radius obtained from MIP (µm), M = gas molecular mass, R = ideal gases constant, T = temperature (K), D0 = coefficient diffusion in the air (m2/s). Few studies provide any insight as to how to obtain the tortuosity factor. The work of Andrade (2012) is exceptional in this sense, as it outlines how the tortuosity factor can be deduced from pore size distribution (from MIP) from the equation: ∅_th=∅_0•ε^(-τ). Equation 5 Where: Øth = threshold diameter (µm), Ø0 = minimum diameter (µm), ɛ = global porosity, τ = tortuosity factor. Alternatively, the following equation may be used to obtain the tortuosity factor: DO2=D0*ɛτ Equation 6 Where: DO2 = oxygen diffusion coefficient obtained experimentally (m2/s), DO20 = oxygen diffusion coefficient in the air (m2/s). This equation has been inferred from Archie´s law ρ_e=〖a•ρ〗_0•ɛ^(-m) and from the Einstein law mentioned above, using the values of oxygen diffusion coefficient obtained experimentally. The principal objective of the current study was to establish correlations between the different parameters that characterize gas transport through concrete. The achievement of this goal will facilitate the assessment of the useful life of concrete, as well as open the door to the pro-active planning for the use of concrete as a radon barrier. Two further objectives were formulated within the current study: 1.- To develop a method for measurement of gas coefficient diffusion in concrete. 2.- To model an analytic estimation of radon diffusion coefficient from parameters related to concrete porosity and tortuosity factor. In order to assess the possible correlations, parameters have been measured using the standardized procedures or purpose-built in the laboratory for the study of equations 1, 2 y 3. To measure the gas diffusion coefficient, a diffusion cell was designed and manufactured, with the design evolving over several cycles of research, leading ultimately to a unit that is reliably air tight. The analytic estimation of the radon diffusion coefficient DRn in concrete is based on concrete global porosity (ɛ), whose values may be experimentally obtained from a mercury intrusion porosimetry test (MIP), and from its tortuosity factor (τ), derived using the relations expressed in equations 5 y 6. The conclusions of the study are: Several models based on regressions, for concrete with a relative humidity of 50%, have been proposed to obtain the diffusion coefficient following the equations K=Dn, K=a*Dn y D=n/ρe. The final of these three relations is the one with the determination coefficient closest to a value of 1: D=(19,997*LNɛ+59,354)/ρe Equation 7 The values of the obtained oxygen diffusion coefficient adjust quite well to those experimentally measured. The proposed method for the measurement of the gas coefficient diffusion is considered to be adequate. The values obtained for the oxygen diffusion coefficient are within the range of those proposed by the literature (10-7 a 10-8 m2/s), and are consistent with the other studied parameters. Tortuosity factors obtained using pore distribution and the expression Ø=Ø0*ɛ-τ are inferior to those from resistivity ρ=ρ0*ɛ-τ. The closest relationship to it is the one with porosity of pore diameter 1 µm (τ=2,07), being 7,21% inferior. Tortuosity factors obtained from the expression DO2=D0*ɛτ are similar to those from resistivity: for global tortuosity τ=2,26 and for the rest of porosities τ=0,7. Estimated radon diffusion coefficients are within the range of those consulted in literature (10-8 a 10-10 m2/s).ABSTRACT El gas radón (Rn) es un gas natural radioactivo presente en algunos terrenos que puede penetrar en los edificios a través de los cerramientos en contacto con el mismo. En los espacios interiores se puede acumular y ser inhalado por las personas. Al ser un gas radioactivo, en su proceso de desintegración emite partículas alfa que, al entrar en contacto con el epitelio pulmonar, pueden producir alteraciones del mismo causando cáncer. Muchos organismos internacionales relacionados con la protección de la salud, como es la OMS, confirman esta causalidad. Una de las formas de evitar que el radón penetre en los edificios es utilizando las propiedades de barrera frente al radón de su propia envolvente en contacto con el terreno. La principal característica del hormigón que confiere la propiedad de barrera frente al radón cuando conforma esta envolvente es su permeabilidad que se puede caracterizar mediante su coeficiente de difusión (DRn). El coeficiente de difusión de un gas en el hormigón es un parámetro que está muy relacionado con su porosidad (ɛ) y su tortuosidad (τ). La medida del coeficiente de difusión del radón resulta bastante complicada debido a que el procedimiento no está normalizado, a que es necesario asegurar una estanquidad a la celda de medida de la difusión y a que la medida tiene que ser realizada en un laboratorio cualificado para el uso de fuentes de radón calibradas, que además son muy caras. La medida del coeficiente de difusión de gases no radioactivos es menos compleja, pero sigue teniendo un alto grado de dificultad puesto que tampoco está normalizada, y se sigue teniendo el problema de lograr una estanqueidad adecuada de la celda de difusión. Otros parámetros que pueden caracterizar el proceso son el coeficiente de permeabilidad (K) y la resistividad eléctrica (ρe), que son más fáciles de determinar mediante ensayos que sí están normalizados. El uso de estos parámetros facilitaría la caracterización del hormigón como barrera frente al radón, pero aunque existen algunos estudios que proponen correlaciones entre estos parámetros, en general existe divergencias entre los investigadores, como se ha podido comprobar en la revisión bibliográfica realizada. Por ello, antes de tratar de medir la difusión del radón se ha considerado necesario realizar más estudios que puedan clarificar las posibles relaciones entre los parámetros: porosidad-tortuosidad, coeficiente de difusión del oxígeno, coeficiente de permeabilidad y resistividad. La medida del coeficiente de permeabilidad (m2) es más sencilla que el de difusión. Hay autores que relacionan el coeficiente de permeabilidad con el de difusión. Gaber (1988) propone la siguiente relación: k= a•Dn Ecuación 1 En donde: a=A/(8ΠD020), A = sección de la muestra, D020 = coeficiente de difusión en el aire (m2/s). Otros estudios (Klink et al. 1999, Gaber y Schlattner 1997, Gräf y Grube et al. 1986) relacionan de forma experimental los coeficientes de difusión de radón y de permeabilidad de distintos hormigones confirmando que existe una relación entre ambos parámetros, utilizando la expresión simplificada: k≈Dn Ecuación 2 En cada estudio concreto se han encontrado distintos valores para n que van desde 1,3 a 2,5 lo que lleva a la necesidad de determinar n porque no hay métodos que eviten la determinación del coeficiente de difusión. Si se mide la difusión ya deja de ser de interés la medida indirecta a través de la permeabilidad. La medida de la resistividad eléctrica es muchísimo más sencilla que la de la difusión. La relación entre ambos parámetros se puede establecer a través de una de las leyes de Einstein que relaciona el movimiento de cargas eléctricas con la conductividad del medio según la siguiente expresión: D_e=k/ρ_e Ecuación 3 En donde: De = coeficiente de difusión (cm2/s), K = constante, ρe = resistividad eléctrica (Ω•cm). El factor de tortuosidad es un factor de forma que representa la irregular geometría de los poros del hormigón, al no ser rectos sino tener una forma tortuosa. Este factor se introduce en la literatura para relacionar la porosidad total con el transporte de un fluido en un medio poroso y se puede formular de distintas formas. Por ejemplo se destaca la ecuación 4 (Mason y Malinauskas) que combina la difusión molecular y la de Knudsen utilizando el factor de tortuosidad: D=ε^τ (3/2r √(πM/8RT+1/D_0 ))^(-1) Ecuación 4 En donde: r = radio medio obtenido del MIP (µm), M = peso molecular del gas, R = constante de los gases ideales, T = temperatura (K), D0 = coeficiente de difusión de un gas en el aire (m2/s). No hay muchos estudios que proporcionen una forma de obtener este factor de tortuosidad. Destaca el estudio de Andrade (2012) en el que deduce el factor de tortuosidad de la distribución del tamaño de poros (curva de porosidad por intrusión de mercurio) a partir de la ecuación: ∅_th=∅_0•ε^(-τ) Ecuación 5 En donde: Øth = diámetro umbral (µm), Ø0 = diámetro mínimo (µm), ɛ = porosidad global, τ = factor de tortuosidad. Por otro lado, se podría utilizar también para obtener el factor de tortuosidad la relación: DO2=D0*-τ Ecuación 6 En donde: DO2 = coeficiente de difusión del oxígeno experimental (m2/s), DO20 = coeficiente de difusión del oxígeno en el aire (m2/s). Esta ecuación está inferida de la ley de Archie ρ_e=〖a•ρ〗_0•ɛ^(-m) y la de Einstein mencionada anteriormente, utilizando valores del coeficiente de difusión del oxígeno DO2 obtenidos experimentalmente. El objetivo fundamental de la tesis es encontrar correlaciones entre los distintos parámetros que caracterizan el transporte de gases a través del hormigón. La consecución de este objetivo facilitará la evaluación de la vida útil del hormigón así como otras posibilidades, como la evaluación del hormigón como elemento que pueda ser utilizado en la construcción de nuevos edificios como barrera frente al gas radón presente en el terreno. Se plantean también los siguientes objetivos parciales en la tesis: 1.- Elaborar una metodología para la medida del coeficiente de difusión de los gases en el hormigón. 2.- Plantear una estimación analítica del coeficiente de difusión del radón a partir de parámetros relacionados con su porosidad y su factor de tortuosidad. Para el estudio de las correlaciones posibles, se han medido los parámetros con los procedimientos normalizados o puestos a punto en el propio Instituto, y se han estudiado las reflejadas en las ecuaciones 1, 2 y 3. Para la medida del coeficiente de difusión de gases se ha fabricado una celda que ha exigido una gran variedad de detalles experimentales con el fin de hacerla estanca. Para la estimación analítica del coeficiente de difusión del radón DRn en el hormigón se ha partido de su porosidad global (ɛ), que se obtiene experimentalmente del ensayo de porosimetría por intrusión de mercurio (MIP), y de su factor de tortuosidad (τ), que se ha obtenido a partir de las relaciones reflejadas en las ecuaciones 5 y 6. Las principales conclusiones obtenidas son las siguientes: Se proponen modelos basados en regresiones, para un acondicionamiento con humedad relativa de 50%, para obtener el coeficiente de difusión del oxígeno según las relaciones: K=Dn, K=a*Dn y D=n/ρe. La propuesta para esta última relación es la que tiene un mejor ajuste con R2=0,999: D=(19,997*LNɛ+59,354)/ρe Ecuación 7 Los valores del coeficiente de difusión del oxígeno así estimados se ajustan a los obtenidos experimentalmente. Se considera adecuado el método propuesto de medida del coeficiente de difusión para gases. Los resultados obtenidos para el coeficiente de difusión del oxígeno se encuentran dentro del rango de los consultados en la literatura (10-7 a 10-8 m2/s) y son coherentes con el resto de parámetros estudiados. Los resultados de los factores de tortuosidad obtenidos de la relación Ø=Ø0*ɛ-τ son inferiores a la de la resistividad (ρ=ρ0*ɛ-τ). La relación que más se ajusta a ésta, siendo un 7,21% inferior, es la de la porosidad correspondiente al diámetro 1 µm con τ=2,07. Los resultados de los factores de tortuosidad obtenidos de la relación DO2=D0*ɛτ son similares a la de la resistividad: para la porosidad global τ=2,26 y para el resto de porosidades τ=0,7. Los coeficientes de difusión de radón estimados mediante estos factores de tortuosidad están dentro del rango de los consultados en la literatura (10-8 a 10-10 m2/s).
Resumo:
En esta tesis doctoral se estudian las variaciones de radón en el interior de dos viviendas similares de construcción nueva en Madrid, una de ellas ocupada y la otra no, que forman parte del mismo edificio residencial. La concentración de radón y los parámetros ambientales (presión, temperatura y humedad) se midieron durante ocho meses. La monitorización del gas radón se realizó mediante detectores de estado sólido. Simultáneamente, se adquirieron algunas variables atmosféricas de un modelo atmosférico. En el análisis de los datos, se utilizó principalmente el método de la Transformada Wavelet. Los resultados muestran que el nivel de radón es ligeramente más alto en la vivienda ocupada que en la otra. A partir del análisis desarrollado en este estudio, se encontró que había un patrón específico estacional en la concentración de radón interior. Además, se analizó también la influencia antropogénica. Se pudieron observar patrones periódicos muy similares en intervalos concretos sin importar si la vivienda está ocupada o no. Por otra parte, los datos se almacenaron en cubos OLAP. El análisis se realizó usando unos algoritmos de agrupamiento (clustering) y de asociación. El objetivo es descubrir las relaciones entre el radón y las condiciones externas como la presión, estabilidad, etc. Además, la metodología aplicada puede ser útil para estudios ambientales en donde se mida radón en espacios interiores. ABSTRACT The present thesis studies the indoor radon variations in two similar new dwellings, one of them occupied and the other unoccupied, from the same residential building in Madrid. Radon concentration and ambient parameters were measured during eight months. Solid state detectors were used for the radon monitoring. Simultaneously, several atmospheric variables were acquired from an atmospheric model. In the data analysis, the Wavelet Transform Method was mainly used. The results show that radon level is slightly higher in the unoccupied dwelling than in the other one. From the analysis developed in this study, it is found that a specific seasonal pattern exists in the indoor radon concentration. Besides, the anthropogenic influence is also analysed. Nearly periodical patterns could be observed in specific periods whether dwelling is occupied or not. Otherwise, data were stored in cubes OLAP. Analysis was carried out using clustering and association algorithms. The aim is to find out the relationships among radon and external conditions like pressure, stability, etc. Besides, the methodology could be useful to assess environmental studies, where indoor radon is measured.