38 resultados para RNA Dynamic Structure

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cell wall is a dynamic structure that regulates both constitutive and inducible plant defence responses. Different molecules o DAMPs (damage-associated molecular patterns) can be released from plant cell walls upon pathogen infection or wounding and can trigger immune responses. To further characterize the function of cell wall on the regulation of these immune responses, we have performed a biased resistance screening of putative/well-characterized primary/secondary Arabidopsis thaliana cell wall mutants (cwm). In this screening we have identified more than 20 cwm mutants with altered susceptibility/resistance to at least one of the following pathogens: the necrotrophic fungi Plectosphaerella cucumerina, the vascular bacterium Ralstonia solanacearum, the biotrophic oomycete Hyaloperonospora arabidopsidis and the powdery mildew fungus Erisyphe cruciferarum. We found that cell wall extracts from some of these cwm plants contain novel DAMPs that activate immune responses and conferred enhanced resistance to particular pathogens when they were applied to wild-type plants. Using glycomic profiling we have performed an initial characterization of the active carbohydrate structures present in these cwm wall fractions, and we have determined the signalling pathways regulated by thesse fractions. . The data generated with this collection of wall mutants support the existence of specific correlations between cell wall structure/composition, resistance to particular type of pathogens and plant fitness. Remarkably, we have identified specific cwm mutations that uncoupled resistance to pathogens from plant trade-offs, further indicating the plasticity of wall structures in the regulation of plant immune responses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show a method for parallelizing top down dynamic programs in a straightforward way by a careful choice of a lock-free shared hash table implementation and randomization of the order in which the dynamic program computes its subproblems. This generic approach is applied to dynamic programs for knapsack, shortest paths, and RNA structure alignment, as well as to a state-of-the-art solution for minimizing the máximum number of open stacks. Experimental results are provided on three different modern multicore architectures which show that this parallelization is effective and reasonably scalable. In particular, we obtain over 10 times speedup for 32 threads on the open stacks problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strong motion obtained in instrumental short-span bridges show the importance of the abutments in the dynamic response of the whole structure. Many models have been used in order to take into account the influence of pier foundations although no reliable ones have been used to analyse the abutment performance. In this work three-dimensional Boundary Element models in frequency domain have been proposed and dimensionless dynamic stiffness of standard bridge abutments have been obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interest for modelling of human actions acting on structures has been recurrent since the first accidents on suspension bridges in the nineteenth century like Broughton (1831) in the U.K. or Angers (1850) in France. Stadiums, gymnasiums are other type of structure where the human induced vibration is very important. In these structures appear particular phenomenon like the interaction person-structure (lock-in), the person-person synchronization, and the influence of the mass and damping of the people in the structure behaviour. This work focuses on the latter topic. The dynamic characteristic of a structure can be changed due to the presence of people on it. In order to evaluate these property modifications several testing have been carried out on a structure designed to be a gymnasium. For the test an electro-dynamic shaker was installed in a fixed point of the gym slab and different groups of people were located around the shaker. In each test the number of people was changed and also their posture (standing and sitting). Test data were analyzed and processed to verify modifications in the structure behaviour.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interest for modelling of human actions acting on structures has been recurrent since the first accidents on suspension bridges in the nineteenth century such as Broughton (1831) in the U.K. or Angers (1850) in France. Stadiums, gymnasiums are other types of structure where human induced vibration is very important. In these structures a particular phenomenon appears such as the interaction personstructure (lock-in), the person-person synchronization, and the influence of the mass and damping of the people in the structural behaviour. This paper focuses on the latter topic. In order to evaluate these property modifications several tests have been carried out on a stand-alone building. For the test an electro-dynamic shaker was installed at a fixed point of the gym slab and different groups of people were located around the shaker. The dynamic characteristics of the structure without people inside have been calculated by two methods: using a three-dimensional finite element model of the building and by operational modal analysis. These calculated experimental and numerical values are the reference values used to evaluate the modifications in the dynamic properties of the structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El gran desarrollo experimentado por la alta velocidad en los principales países de la Unión Europea, en los últimos 30 años, hace que este campo haya sido y aún sea uno de los principales referentes en lo que a investigación se refiere. Por otra parte, la aparición del concepto super − alta velocidad hace que la investigación en el campo de la ingeniería ferroviaria siga adquiriendo importancia en los principales centros de investigación de los países en los que se desea implantar este modo de transporte, o en los que habiendo sido ya implantado, se pretenda mejorar. Las premisas de eficacia, eficiencia, seguridad y confort, que este medio de transporte tiene como razón de ser pueden verse comprometidas por diversos factores. Las zonas de transición, definidas en la ingeniería ferroviaria como aquellas secciones en las que se produce un cambio en las condiciones de soporte de la vía, pueden afectar al normal comportamiento para el que fue diseñada la infraestructura, comprometiendo seriamente los estándares de eficiencia en el tiempo de viaje, confort de los pasajeros y aumentando considerablemente los costes de mantenimiento de la vía, si no se toman las medidas oportunas. En esta tesis se realiza un estudio detallado de la zonas de transición, concretamente de aquellas en las que existe una cambio en la rigidez vertical de la vía debido a la presencia de un marco hidráulico. Para realizar dicho estudio se lleva a cabo un análisis numérico de interacción entre el vehículo y la estructura, con un modelo bidimensional de elemento finitos, calibrado experimentalmente, en estado de tensión plana. En este análisis se tiene en cuenta el efecto de las irregularidades de la vía y el comportamiento mecánico de la interfaz suelo-estructura, con el objetivo de reproducir de la forma más real posible el efecto de interacción entre el vehículo, la vía y la estructura. Otros efectos como la influencia de la velocidad del tren y los asientos diferenciales, debidos a deformaciones por consolidación de los terraplenes a ambos lados el marco hidráulico, son también analizados en este trabajo. En esta tesis, los cálculos de interacción se han llevado a cabo en dos fases diferentes. En la primera, se ha considerado una interacción sencilla debida al paso de un bogie de un tren Eurostar. Los cálculos derivados de esta fase se han denominado cálculos a corto plazo. En la segunda, se ha realizado un análisis considerando múltiples pasos de bogie del tren Eurostar, conformando un análisis de degradación en el que se tiene en cuenta, en cada ciclo, la deformación de la capa de balasto. Los cálculos derivados de esta fase, son denominados en el texto como cálculos a largo plazo. Los resultados analizados muestran que la utilización de los denominados elementos de contacto es fundamental cuando se desea estudiar la influencia de asientos diferenciales, especialmente en transiciones terraplén-estructura en las que la cuña de cimentación no llega hasta la base de cimentación de la estructura. Por otra parte, tener en cuenta los asientos del terraplén, es sumamente importante, cuando se desea realizar un análisis de degradación de la vía ya que su influencia en la interacción entre el vehículo y la vía es muy elevada, especialmente para valores altos de velocidad del tren. En cuanto a la influencia de las irregularidades de la vía, en los cálculos efectuados, se revela que su importancia es muy notable, siendo su influencia muy destacada cuanto mayor sea la velocidad del tren. En este punto cabe destacar la diferencia de resultados derivada de la consideración de perfiles de irregularidades de distinta naturaleza. Los resultados provenientes de considerar perfiles artificiales son en general muy elevados, siendo estos más apropiados para realizar estudios de otra índole, como por ejemplo de seguridad al descarrilamiento. Los resultados provenientes de perfiles reales, dados por diferentes Administradores ferroviarios, presentan resultados menos elevados y más propios del problema analizar. Su influencia en la interacción dinámica entre el vehículo y la vía es muy importante, especialmente para velocidades elevadas del tren. Además el fenómeno de degradación conocido como danza de traviesas, asociado a zonas de transición, es muy susceptible a la consideración de irregularidades de la vía, tal y como se desprende de los cálculos efectuados a largo plazo. The major development experienced by high speed in the main countries of the European Union, in the last 30 years, makes railway research one of the main references in the research field. It should also be mentioned that the emergence of the concept superhigh − speed makes research in the field of Railway Engineering continues to gain importance in major research centers in the countries in which this mode of transportation is already implemented or planned to be implemented. The characteristics that this transport has as rationale such as: effectiveness, efficiency, safety and comfort, may be compromised by several factors. The transition zones are defined in railway engineering as a region in which there is an abrupt change of track stiffness. This stiffness variation can affect the normal behavior for which the infrastructure has been designed, seriously compromising efficiency standards in the travel time, passenger comfort and significantly increasing the costs of track maintenance, if appropriate measures are not taken. In this thesis a detailed study of the transition zones has been performed, particularly of those in which there is a change in vertical stiffness of the track due to the presence of a reinforced concrete culvert. To perform such a study a numerical interaction analysis between the vehicle, the track and the structure has been developed. With this purpose a two-dimensional finite element model, experimentally calibrated, in a state of plane stress, has been used. The implemented numerical models have considered the effects of track irregularities and mechanical behavior of soil-structure interface, with the objective of reproducing as accurately as possible the dynamic interaction between the vehicle the track and the structure. Other effects such as the influence of train speed and differential settlement, due to secondary consolidation of the embankments on both sides of culvert, have also been analyzed. In this work, the interaction analysis has been carried out in two different phases. In the first part a simple interaction due to the passage of a bogie of a Eurostar train has been considered. Calculations derived from this phase have been named short-term analysis. In the second part, a multi-load assessment considering an Eurostar train bogie moving along the transition zone, has been performed. The objective here is to simulate a degradation process in which vertical deformation of the ballast layer was considered. Calculations derived from this phase have been named long-term analysis. The analyzed results show that the use of so-called contact elements is essential when one wants to analyze the influence of differential settlements, especially in embankment-structure transitions in which the wedge-shaped backfill does not reach the foundation base of the structure. Moreover, considering embankment settlement is extremely important when it is desired to perform an analysis of track degradation. In these cases the influence on the interaction behaviour between the vehicle and the track is very high, especially for higher values of speed train. Regarding the influence of the track irregularities, this study has proven that the track’s dynamic response is heavily influenced by the irregularity profile and that this influence is more important for higher train velocities. It should also be noted that the difference in results derived from consideration of irregularities profiles of different nature. The results coming from artificial profiles are generally very high, these might be more appropriate in order to study other effects, such as derailment safety. Results from real profiles, given by the monitoring works of different rail Managers, are softer and they fit better to the context of this thesis. The influence of irregularity profiles on the dynamic interaction between the train and the track is very important, especially for high-speeds of the train. Furthermore, the degradation phenomenon known as hanging sleepers, associated with transition zones, is very susceptible to the consideration of track irregularities, as it can be concluded from the long-term analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A maritime construction is usually a slender line in the ocean.It is usual to see just its narrow surface strip and not analyse the large amount of submerged material the latter is supporting.Without doubt,it is the ground to which a notable load is transmitted in an environment subjected to periodic,alternating stresses,dynamic forces which the sea's media constitute. Both an outer and inner maritime construction works in a complex fashion.A granular solid(breakwater)breathes with the incident wave flow,dissipating part of the wave energy between its gaps.The backflow tries to extract the different items from the solid block,setting a balance between effective and neutral tensions that follow Terzaghui's principle. On some occasions,fluidification of the armour layer has caused the breakwater to collapse(Sines,Portugal,February 1978).On others,siphoning or liquefaction of sand supporting monoliths(vertical breakwaters)lead them to destruction or collapse(New Barcelona Harbour Mouth,Spain,November 2001). This is why the ground-force-structure interaction is a complicated analysis with joint design tools still in an incipient state. The purpose of this article is to describe two singular failures in inner maritime constructions in Spain deriving from ground problems(Malaga,July 2004and Barcelona,January 2007).They occurred recently and the causes are the subject of reflection and analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the dynamic response of a wind turbine structure subjected to theoretical seismic motions, taking into account the rotational component of ground shaking. Models are generated for a shallow moderate crustal earthquake in the Madrid Region (Spain). Synthetic translational and rotational time histories are computed using the Discrete Wavenumber Method, assuming a point source and a horizontal layered earth structure. These are used to analyze the dynamic response of a wind turbine, represented by a simple finite element model. Von Mises stress values at different heights of the tower are used to study the dynamical structural response to a set of synthetic ground motion time histories

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Culverts are very common in recent railway lines. Wild life corridors and drainage conducts often fall in this category of partially buried structures. Their dynamic behavior has received far less attention than other structures such as bridges but its large number makes that study an interesting challenge from the point of view of safety and savings. In this paper a complete study of a culvert, including on-site measurements as well as numerical modelling, will be presented. The structure belongs to the high speed railway line linking Segovia and Valladolid, in Spain. The line was opened to traffic in 2004. Its dimensions (3x3m) are the most frequent along the line. Other factors such as reduced overburden (0.6m) and an almost right angle with the track axis make it an interesting example to extract generalized conclusions. On site measurements have been performed in the structure recording the dynamic response at selected points of the structure during the passage of high speed trains at speeds ranging between 200 and 300km/h. The measurements by themselves provide a good insight into the main features of the dynamic behaviour of the structure. A 3D finite element model of the structure, representing its key features was also studied as it allows further understanding of the dynamic response to the train loads . In the paper the discrepancies between predicted and measured vibration levels will be analyzed and some advices on numerical modelling will be proposed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work a methodology for analysing the lateral coupled behavior of large viaducts and high-speed trains is proposed. The finite element method is used for the structure, multibody techniques are applied for vehicles and the interaction between them is established introducing wheel-rail nonlinear contact forces. This methodology is applied for the analysis of the railway viaduct of the R´ıo Barbantino, which is a very long and tall bridge in the north-west spanish high-speed line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Underpasses are common in modern railway lines. Wildlife corridors and drainage conduits often fall into this category of partially buried structures. Their dynamic behavior has received far less attention than that of other structures such as bridges, but their large number makes their study an interesting challenge from the viewpoint of safety and cost savings. Here, we present a complete study of a culvert, including on-site measurements and numerical modeling. The studied structure belongs to the high-speed railway line linking Segovia and Valladolid in Spain. The line was opened to traffic in 2004. On-site measurements were performed for the structure by recording the dynamic response at selected points of the structure during the passage of high-speed trains at speeds ranging between 200 and 300 km/h. The measurements provide not only reference values suitable for model fitting, but also a good insight into the main features of the dynamic behavior of this structure. Finite element techniques were used to model the dynamic behavior of the structure and its key features. Special attention is paid to vertical accelerations, the values of which should be limited to avoid track instability according to Eurocode. This study furthers our understanding of the dynamic response of railway underpasses to train loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strong motion records obtained in instrumented short-span bridges show the importance of the abutments in the dynamic response of the structure. Existing models study the pier foundation influence but not the abutment performance. This work proposes two and three dimensional boundary element models in the frequency domain and studies the dimensionless dynamic stiffness of standard bridge abutments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simplified analytical model of a short span bridge is proposed. The inertial interaction effects of pier foundations and abutments has been included in order to evaluate the response sensitivities to different soil-structure interaction variables. The modification of natural frequency and damping properties is shown for typical short span bridges of the integral deck-abutment type for longitudinal vibrations or general bridges for the transverse ones.