3 resultados para REPLACEMENTS

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El proyecto de rehabilitación de una de las naves del complejo fabril de la industria química ?CROS? en Valencia se llevó a cabo con el criterio de mantener, en la medida de lo posible, los elementos estructurales presentes en la nave. Con este objetivo se realizaron una serie de ensayos no destructivos (END) in situ. Estos ensayos permitieron evaluar la calidad de la madera, determinar qué elementos estructurales debían ser sustituidos y comprobar la aptitud de los que iban a ser reutilizados. Los END empleados en este estudio fueron los siguientes: (1) Identificación de la especie por técnicas anatómicas, (2) Clasificación resistente por método visual, (3) Estimación de humedad por la técnica de resistencia eléctrica; (4) Obtención de velocidades de propagación ultrasónicas (5) Resistógrafía y (6) Alteración de la propagación de ondas electromagnéticas por medio de Georradar. Para la calibración de estos END se tomó una muestra de piezas y se hicieron ensayos destructivos bajo condiciones controladas en laboratorio. En el trabajo que aquí se presenta se muestra la metodología empleada durante el proceso de toma de datos, de análisis de resultados y de cruce de la información obtenida a partir de cada uno de los ensayos hasta llegar a un diagnóstico para los elementos analizados. The assessment of structural timber was requested in the rehabilitation project of the Naves of the chemical industry "CROS". The criterion was to maintain as much as possible timber of the structure and to make only partial replacements. In order not to damage the existing structure and to assess the quality of the existing timber, a series of non-destructive testing (NDT) in the entire structure were performed: (1) Identification of the species by anatomical techniques, (2) Strength grading by visual method, (3) Estimation of moisture content by the technique of electrical resistance, (4) Acquisition of ultrasonic propagation velocities (5) Resistography and (6) Record of the propagation of electromagnetic waves by means of Ground-penetrating radar. Following, a sample group was chose to carry out destructive testing in the lab and compare the NDT results with those obtained with the standard UNE-EN408 (modules of strength, stiffness and density). In the present work, the results provided by each of the NDT techniques are detailed and above all, what is more important, the validity of these after they have been contrasted with the destructive standard tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systems used for target localization, such as goods, individuals, or animals, commonly rely on operational means to meet the final application demands. However, what would happen if some means were powered up randomly by harvesting systems? And what if those devices not randomly powered had their duty cycles restricted? Under what conditions would such an operation be tolerable in localization services? What if the references provided by nodes in a tracking problem were distorted? Moreover, there is an underlying topic common to the previous questions regarding the transfer of conceptual models to reality in field tests: what challenges are faced upon deploying a localization network that integrates energy harvesting modules? The application scenario of the system studied is a traditional herding environment of semi domesticated reindeer (Rangifer tarandus tarandus) in northern Scandinavia. In these conditions, information on approximate locations of reindeer is as important as environmental preservation. Herders also need cost-effective devices capable of operating unattended in, sometimes, extreme weather conditions. The analyses developed are worthy not only for the specific application environment presented, but also because they may serve as an approach to performance of navigation systems in absence of reasonably accurate references like the ones of the Global Positioning System (GPS). A number of energy-harvesting solutions, like thermal and radio-frequency harvesting, do not commonly provide power beyond one milliwatt. When they do, battery buffers may be needed (as it happens with solar energy) which may raise costs and make systems more dependent on environmental temperatures. In general, given our problem, a harvesting system is needed that be capable of providing energy bursts of, at least, some milliwatts. Many works on localization problems assume that devices have certain capabilities to determine unknown locations based on range-based techniques or fingerprinting which cannot be assumed in the approach considered herein. The system presented is akin to range-free techniques, but goes to the extent of considering very low node densities: most range-free techniques are, therefore, not applicable. Animal localization, in particular, uses to be supported by accurate devices such as GPS collars which deplete batteries in, maximum, a few days. Such short-life solutions are not particularly desirable in the framework considered. In tracking, the challenge may times addressed aims at attaining high precision levels from complex reliable hardware and thorough processing techniques. One of the challenges in this Thesis is the use of equipment with just part of its facilities in permanent operation, which may yield high input noise levels in the form of distorted reference points. The solution presented integrates a kinetic harvesting module in some nodes which are expected to be a majority in the network. These modules are capable of providing power bursts of some milliwatts which suffice to meet node energy demands. The usage of harvesting modules in the aforementioned conditions makes the system less dependent on environmental temperatures as no batteries are used in nodes with harvesters--it may be also an advantage in economic terms. There is a second kind of nodes. They are battery powered (without kinetic energy harvesters), and are, therefore, dependent on temperature and battery replacements. In addition, their operation is constrained by duty cycles in order to extend node lifetime and, consequently, their autonomy. There is, in turn, a third type of nodes (hotspots) which can be static or mobile. They are also battery-powered, and are used to retrieve information from the network so that it is presented to users. The system operational chain starts at the kinetic-powered nodes broadcasting their own identifier. If an identifier is received at a battery-powered node, the latter stores it for its records. Later, as the recording node meets a hotspot, its full record of detections is transferred to the hotspot. Every detection registry comprises, at least, a node identifier and the position read from its GPS module by the battery-operated node previously to detection. The characteristics of the system presented make the aforementioned operation own certain particularities which are also studied. First, identifier transmissions are random as they depend on movements at kinetic modules--reindeer movements in our application. Not every movement suffices since it must overcome a certain energy threshold. Second, identifier transmissions may not be heard unless there is a battery-powered node in the surroundings. Third, battery-powered nodes do not poll continuously their GPS module, hence localization errors rise even more. Let's recall at this point that such behavior is tight to the aforementioned power saving policies to extend node lifetime. Last, some time is elapsed between the instant an identifier random transmission is detected and the moment the user is aware of such a detection: it takes some time to find a hotspot. Tracking is posed as a problem of a single kinetically-powered target and a population of battery-operated nodes with higher densities than before in localization. Since the latter provide their approximate positions as reference locations, the study is again focused on assessing the impact of such distorted references on performance. Unlike in localization, distance-estimation capabilities based on signal parameters are assumed in this problem. Three variants of the Kalman filter family are applied in this context: the regular Kalman filter, the alpha-beta filter, and the unscented Kalman filter. The study enclosed hereafter comprises both field tests and simulations. Field tests were used mainly to assess the challenges related to power supply and operation in extreme conditions as well as to model nodes and some aspects of their operation in the application scenario. These models are the basics of the simulations developed later. The overall system performance is analyzed according to three metrics: number of detections per kinetic node, accuracy, and latency. The links between these metrics and the operational conditions are also discussed and characterized statistically. Subsequently, such statistical characterization is used to forecast performance figures given specific operational parameters. In tracking, also studied via simulations, nonlinear relationships are found between accuracy and duty cycles and cluster sizes of battery-operated nodes. The solution presented may be more complex in terms of network structure than existing solutions based on GPS collars. However, its main gain lies on taking advantage of users' error tolerance to reduce costs and become more environmentally friendly by diminishing the potential amount of batteries that can be lost. Whether it is applicable or not depends ultimately on the conditions and requirements imposed by users' needs and operational environments, which is, as it has been explained, one of the topics of this Thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El desarrollo de nuevas estructuras aeroespaciales optimizadas, utilizan materiales compuestos, para los componentes críticos y subsistemas, principalmente polímeros reforzados con fibra de carbono (CFRP). Un conocimiento profundo del estado de daño por fatiga de estructuras de CFRP avanzado, es esencial para predecir la vida residual y optimizar los intervalos de inspección estructural, reparaciones y/o sustitución de componentes. Las técnicas actuales se basan principalmente en la medición de cargas estructurales a lo largo de la vida útil de la estructura mediante galgas extensométricas eléctricas. Con esos datos, se estima la vida a fatiga utilizando modelos de acumulación de daño. En la presente tesis, se evalúa la metodología convencional para la estimación de la vida a fatiga de un CFRP aeronáutico. Esta metodología está basada en la regla de acumulación de daño lineal de Palmgren-Miner, y es aplicada para determinar la vida a fatiga de estructuras sometidas a cargas de amplitud variable. Se ha realizado una campaña de ensayos con cargas de amplitud constante para caracterizar un CFRP aeronáutico a fatiga, obteniendo las curvas clásicas S-N, en diferentes relaciones de esfuerzo. Se determinaron los diagramas de vida constante, (CLD), también conocidos como diagramas de Goodman, utilizando redes neuronales artificiales debido a la ausencia de modelos coherentes para materiales compuestos. Se ha caracterizado la degradación de la rigidez debido al daño por fatiga. Se ha ensayado un segundo grupo de probetas con secuencias estandarizadas de cargas de amplitud variable, para obtener la vida a fatiga y la degradación de rigidez en condiciones realistas. Las cargas aplicadas son representativas de misiones de aviones de combate (Falstaff), y de aviones de transporte (Twist). La vida a fatiga de las probetas cicladas con cargas de amplitud variable, se comparó con el índice de daño teórico calculado en base a la regla de acumulación de daño lineal convencional. Los resultados obtenidos muestran predicciones no conservativas. Esta tesis también presenta el estudio y desarrollo, de una nueva técnica de no contacto para evaluar el estado de daño por fatiga de estructuras de CFRP por medio de cambios de los parámetros de rugosidad. La rugosidad superficial se puede medir fácilmente en campo con métodos sin contacto, mediante técnicas ópticas tales como speckle y perfilómetros ópticos. En el presente estudio, se han medido parámetros de rugosidad superficial, y el factor de irregularidad de la superficie, a lo largo de la vida de las probetas cicladas con cargas de amplitud constante y variable, Se ha obtenido una buena tendencia de ajuste al correlacionar la magnitud de la rugosidad y el factor de irregularidad de la superficie con la degradación de la rigidez de las probetas fatigadas. Estos resultados sugieren que los cambios en la rugosidad superficial medida en zonas estratégicas de componentes y estructuras hechas de CFRP, podrían ser indicativas del nivel de daño interno debido a cargas de fatiga. Los resultados también sugieren que el método es independiente del tipo de carga de fatiga que ha causado el daño. Esto último hace que esta técnica de medición sea aplicable como inspección para una amplia gama de estructuras de materiales compuestos, desde tanques presurizados con cargas de amplitud constante, estructuras aeronáuticas como alas y colas de aeronaves cicladas con cargas de amplitud variable, hasta aplicaciones industriales como automoción, entre otros. ABSTRACT New optimized aerospace structures use composite materials, mainly carbon fiber reinforced polymer composite (CFRP), for critical components and subsystems. A strong knowledge of the fatigue state of highly advanced (CFRP) structures is essential to predict the residual life and optimize intervals of structural inspection, repairs, and/or replacements. Current techniques are based mostly on measurement of structural loads throughout the service life by electric strain gauge sensors. These sensors are affected by extreme environmental conditions and by fatigue loads in such a way that the sensors and their systems require exhaustive maintenance throughout system life. In the present thesis, the conventional methodology based on linear damage accumulation rules, applied to determine the fatigue life of structures subjected to variable amplitude loads was evaluated for an aeronautical CFRP. A test program with constant amplitude loads has been performed to obtain the classical S-N curves at different stress ratios. Constant life diagrams, CLDs, where determined by means of Artificial Neural Networks due to the absence of consistent models for composites. The stiffness degradation due to fatigue damage has been characterized for coupons under cyclic tensile loads. A second group of coupons have been tested until failure with a standardized sequence of variable amplitude loads, representative of missions for combat aircraft (Falstaff), and representative of commercial flights (Twist), to obtain the fatigue life and the stiffness degradation under realistic conditions. The fatigue life of the coupons cycled with variable amplitude loads were compared to the theoretical damage index calculated based on the conventional linear damage accumulation rule. The obtained results show non-conservative predictions. This thesis also presents the evaluation of a new non-contact technique to evaluate the fatigue damage state of CFRP structures by means of measuring roughness parameters to evaluate changes in the surface topography. Surface roughness can be measured easily on field with non-contact methods by optical techniques such as speckle and optical perfilometers. In the present study, surface roughness parameters, and the surface irregularity factor, have been measured along the life of the coupons cycled with constant and variable amplitude loads of different magnitude. A good agreement has been obtained when correlating the magnitude of the roughness and the surface irregularity factor with the stiffness degradation. These results suggest that the changes on the surface roughness measured in strategic zones of components and structures made of CFRP, could be indicative of the level of internal damage due to fatigue loads. The results also suggest that the method is independent of the type of fatigue load that have caused the damage. It makes this measurement technique applicable for a wide range of inspections of composite materials structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures like wings and empennages, up to automotive and other industrial applications.