11 resultados para RELATIVISTIC THERMAL PLASMAS

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of matter under conditions of high density, pressure, and temperature is a valuable subject for inertial confinement fusion (ICF), astrophysical phenomena, high-power laser interaction with matter, etc. In all these cases, matter is heated and compressed by strong shocks to high pressures and temperatures, becomes partially or completely ionized via thermal or pressure ionization, and is in the form of dense plasma. The thermodynamics and the hydrodynamics of hot dense plasmas cannot be predicted without the knowledge of the equation of state (EOS) that describes how a material reacts to pressure and how much energy is involved. Therefore, the equation of state often takes the form of pressure and energy as functions of density and temperature. Furthermore, EOS data must be obtained in a timely manner in order to be useful as input in hydrodynamic codes. By this reason, the use of fast, robust and reasonably accurate atomic models, is necessary for computing the EOS of a material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K� yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of � 8 � 1010 A=cm2 they reach 1:5 keV=�m and 0:8 keV=�m, respectively. For higher current densities up to 1012 A=cm2, numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV=�m for electron current densities of 1014 A=cm2, representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density n,produced by the (anomalous) absorption of a laser pulse of irradiation

thermal wave (where convection is negligible) moving into the undisturbed plasma, from a much thinner isothermal flow expanding into the vacuum. For l€~4'3, a qualitative discussion of how plasma behavior changes with a, is given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AnewRelativisticScreenedHydrogenicModel has been developed to calculate atomic data needed to compute the optical and thermodynamic properties of high energy density plasmas. The model is based on anewset of universal screeningconstants, including nlj-splitting that has been obtained by fitting to a large database of ionization potentials and excitation energies. This database was built with energies compiled from the National Institute of Standards and Technology (NIST) database of experimental atomic energy levels, and energies calculated with the Flexible Atomic Code (FAC). The screeningconstants have been computed up to the 5p3/2 subshell using a Genetic Algorithm technique with an objective function designed to minimize both the relative error and the maximum error. To select the best set of screeningconstants some additional physical criteria has been applied, which are based on the reproduction of the filling order of the shells and on obtaining the best ground state configuration. A statistical error analysis has been performed to test the model, which indicated that approximately 88% of the data lie within a ±10% error interval. We validate the model by comparing the results with ionization energies, transition energies, and wave functions computed using sophisticated self-consistent codes and experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current I to a cylindrical Langmuir probe with a bias Φp satisfying β≡eΦp/mec2∼O(1) is discussed. The probe is considered at rest in an unmagnetized plasma composed of electrons and ions with temperatureskTe∼kTi≪mec2. For small enough radius, the probe collects the relativistic orbital-motion-limited (OML) current I OML , which is shown to be larger than the non-relativistic result; the OML current is proportional to β1/2 and β3/2 in the limits β≪1 and β≫1, respectively. Unlike the non-relativistic case, the electron density can exceed the unperturbed density value. An asymptotic theory allowed to compute the maximum radius of the probe to collect OML current, the sheath radius for probe radius well below maximum and how the ratio I/I OML drops below unity when the maximum radius is exceeded. A numerical algorithm that solves the Vlasov-Poisson system was implemented and density and potential profiles presented. The results and their implications in a possible mission to Jupiter with electrodynamic bare tethers are discussed density value. An asymptotic theory allowed to compute the maximum radius of the probe to collect OML current, the sheath radius for probe radius well below maximum and how the ratio I/IOML drops below unity when the maximum radius is exceeded. A numerical algorithm that solves the Vlasov-Poisson system was implemented and density and potential profiles presented. The results and their implications in a possible mission to Jupiter with electrodynamic bare tethers are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The one-dimensional motion generated in a cold, infinite, uniform plasma of density na by the absorption, in a certain plane, of a linear pulse of energy per unit time and area = 4>0t/r, 0< t< r, is considered, the analysis allows for thermal conduction and viscosity of ions and electrons, their energy exchange, and an electron heat flux limiter The resulting motion is self-similar and governed by a single nondimensional parameter a«(n0 2T/0)2/3 Detailed asymptotic results are obtained for both a < l and a > l , the general behavior of the solution for arbitrary a is discussed The analysis can be extended to the case of a plasma initially occupying a half-space, and throws light on how to optimize the hydrodynamics of laser fusion plasmas Known approximate results corresponding to motion of a plasma submitted to constant irradiation (<()) are recovered in the present work under appropriate limiting processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron-retarding range of the current-voltage characteristic of a flat Langmuir probe perpendicular to a strong magnetic field in a fully ionized plasma is analysed allowing for anomalous (Bohm) cross-field transport and temperature changes in the collection process. With probe size and ion thermal gyroradius comparable, and smaller than the electron mean free path, there is an outer quasineutral region with ion viscosity determinant in allowing nonambipolar parallel and cross flow. A potential overshoot lying either at the base or inside the quasineutral region both makes ions follow Boltzmann's law at negative bias and extends the electron-retarding range to probe bias e(j)p ~ +2Too. Electron heating and cooling occur roughly at positive and negative bias, with a re-minimum around efa ~ - 2 7 ^ ; far from the probe heat conduction cools and heats electrons at and radially away from the probe axis, respectively. The potential overshoot with no thermal effects would reduce the electron current Ie, making the In Ie versus 4>p graph downwards-concave,but cooling further reduces Ie substantially, and may tilt the slope upwards past the temperature minimum. The domain of strict validity of our analysis is narrow in case of low ion mass (deuterium), breaking down with the ion Boltzmann law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the ion acceleration mechanisms that occur during the interaction of an intense and ultrashort laser pulse ( λ > μ I 2 1018 W cm−2 m2) with an underdense helium plasma produced from an ionized gas jet target. In this unexplored regime, where the laser pulse duration is comparable to the inverse of the electron plasma frequency ωpe, reproducible non-thermal ion bunches have been measured in the radial direction. The two He ion charge states present energy distributions with cutoff energies between 150 and 200 keV, and a striking energy gap around 50 keV appearing consistently for all the shots in a given density range. Fully electromagnetic particle-in-cell simulations explain the experimental behaviors. The acceleration results from a combination of target normal sheath acceleration and Coulomb explosion of a filament formed around the laser pulse propagation axis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical investigations on mutual interactions between two spatially overlapping standing electromagnetic solitons in a cold unmagnetized plasma are reported. It is found that an initial state comprising of two overlapping standing solitons evolves into different end states, depending on the amplitudes of the two solitons and the phase difference between them. For small amplitude solitons with zero phase difference, we observe the formation of an oscillating bound state whose period depends on their initial separation. These results suggest the existence of a bound state made of two solitons in the relativistic cold plasma fluid model.