5 resultados para REDOX POTENTIALS
em Universidad Politécnica de Madrid
Resumo:
Zinc chelates have been widely used to correct deficiencies in this micronutrient in different soil types and under different moisture conditions. The aging of the metal in soil could cause a change in its availability. Over time the most labile forms of Zn could decrease in activity and extractability and change to more stable forms. Various soil parameters, such as redox conditions, time, soil type and moisture conditions, affect the aging process and modify the solubility of the metal. In general, redox conditions influence pH and also the chemical forms dissolved in the soil solution. Soil pH also affects Zn solubility; at high pH values, most of the Zn is present in forms that are not bioavailable to plants. The objective of this study was to determine the changes in Zn over time in a soil solution in a waterlogged acidic soil to which synthetic and natural chelates were applied
Resumo:
Screw dislocations in bcc metals display non-planar cores at zero temperature which result in high lattice friction and thermally-activated strain rate behavior. In bcc W, electronic structure molecular statics calculations reveal a compact, non-degenerate core with an associated Peierls stress between 1.7 and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations can only be gained by using more efficient atomistic simulations based on semiempirical interatomic potentials. In this paper we assess the suitability of five different potentials in terms of static properties relevant to screw dislocations in pure W. Moreover, we perform molecular dynamics simulations of stress-assisted glide using all five potentials to study the dynamic behavior of screw dislocations under shear stress. Dislocations are seen to display thermally-activated motion in most of the applied stress range, with a gradual transition to a viscous damping regime at high stresses. We find that one potential predicts a core transformation from compact to dissociated at finite temperature that affects the energetics of kink-pair production and impacts the mechanism of motion. We conclude that a modified embedded-atom potential achieves the best compromise in terms of static and dynamic screw dislocation properties, although at an expense of about ten-fold compared to central potentials.
Resumo:
In the framework of the so-called third generation solar cells, three main concepts have been proposed in order to exceed the limiting efficiency of single-gap solar cells: the hot-carrier solar cell, the impact-ionization or multiple-exciton-generation solar cell, and the intermediate-band solar cell. At first sight, the three concepts are different, but in this paper, we illustrate how all these concepts, including the single-gap solar cell, share a common trunk that we call "core photovoltaic material." We demonstrate that each one of these next-generation concepts differentiates in fact from this trunk depending on the hypotheses that are made about the physical principles governing the electron electrochemical potentials. In the process, we also clarify the differences between electron, phonon, and photon chemical potentials (the three fundamental particles involved in the operation of the solar cell). The in-depth discussion of the physics involved about the operation of these cells also provides new insights about the operation of these cells.
Resumo:
Palm juice (Borassus flabellifer) is one of the most common and cheap natural juices. Fermented palm juice contains various phytochemical compounds that exhibit antioxidant activity. In the present study, we examined the effects of pH on the production of phytochemicals and their antioxidant activity during the fermentation process. The concentration of total phenolics and flavonoid compounds of fermented palm juice and their antioxidant activity were investigated at various pH. The results showed that total phenolics concentration and antioxidant activity of palm wine and palm vinegar increase as pH increases: 3.54.55.5. Maximum flavonoid concentration was obtained at pH 6.5. Measurements of antioxidant activity by conventional DPPH method and Photochem antioxidant analyzer technique were highly correlated, with a corresponding R2 value of 0.94.
Resumo:
The effect caused by ground fault current in a complex system of interacting electrodes is theoretically studied. The calculation applies to a specific case in which a set of interconnected electrodes, which are part of a grounding facility network, are activated by a ground fault current. Transferred potentials to adjacent passive electrodes are calculated and the most relevant parameters of the electrode system are evaluated. Finally, the convenience of connecting the grounding electrodes is discussed.