40 resultados para RDF triples
em Universidad Politécnica de Madrid
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
OGOLOD is a Linked Open Data dataset derived from different biomedical resources by an automated pipeline, using a tailored ontology as a scaffold. The key contribution of OGOLOD is that it links, in new RDF triples, genetic human diseases and orthologous genes, paving the way for a more efficient translational biomedical research exploiting the Linked Open Data cloud.
Resumo:
Linked Data assets (RDF triples, graphs, datasets, mappings...) can be object of protection by the intellectual property law, the database law or its access or publication be restricted by other legal reasons (personal data pro- tection, security reasons, etc.). Publishing a rights expression along with the digital asset, allows the rightsholder waiving some or all of the IP and database rights (leaving the work in the public domain), permitting some operations if certain conditions are satisfied (like giving attribution to the author) or simply reminding the audience that some rights are reserved.
Resumo:
This paper introduces a semantic language developed with the objective to be used in a semantic analyzer based on linguistic and world knowledge. Linguistic knowledge is provided by a Combinatorial Dictionary and several sets of rules. Extra-linguistic information is stored in an Ontology. The meaning of the text is represented by means of a series of RDF-type triples of the form predicate (subject, object). Semantic analyzer is one of the options of the multifunctional ETAP-3 linguistic processor. The analyzer can be used for Information Extraction and Question Answering. We describe semantic representation of expressions that provide an assessment of the number of objects involved and/or give a quantitative evaluation of different types of attributes. We focus on the following aspects: 1) parametric and non-parametric attributes; 2) gradable and non-gradable attributes; 3) ontological representation of different classes of attributes; 4) absolute and relative quantitative assessment; 5) punctual and interval quantitative assessment; 6) intervals with precise and fuzzy boundaries
Resumo:
We introduce SRBench, a general-purpose benchmark primarily designed for streaming RDF/SPARQL engines, completely based on real-world data sets from the Linked Open Data cloud. With the increasing problem of too much streaming data but not enough tools to gain knowledge from them, researchers have set out for solutions in which Semantic Web technologies are adapted and extended for publishing, sharing, analysing and understanding streaming data. To help researchers and users comparing streaming RDF/SPARQL (strRS) engines in a standardised application scenario, we have designed SRBench, with which one can assess the abilities of a strRS engine to cope with a broad range of use cases typically encountered in real-world scenarios. The data sets used in the benchmark have been carefully chosen, such that they represent a realistic and relevant usage of streaming data. The benchmark defines a concise, yet omprehensive set of queries that cover the major aspects of strRS processing. Finally, our work is complemented with a functional evaluation on three representative strRS engines: SPARQLStream, C-SPARQL and CQELS. The presented results are meant to give a first baseline and illustrate the state-of-the-art.
Resumo:
Two complementary benchmarks have been proposed so far for the evaluation and continuous improvement of RDF stream processors: SRBench and LSBench. They put a special focus on different features of the evaluated systems, including coverage of the streaming extensions of SPARQL supported by each processor, query processing throughput, and an early analysis of query evaluation correctness, based on comparing the results obtained by different processors for a set of queries. However, none of them has analysed the operational semantics of these processors in order to assess the correctness of query evaluation results. In this paper, we propose a characterization of the operational semantics of RDF stream processors, adapting well-known models used in the stream processing engine community: CQL and SECRET. Through this formalization, we address correctness in RDF stream processor benchmarks, allowing to determine the multiple answers that systems should provide. Finally, we present CSRBench, an extension of SRBench to address query result correctness verification using an automatic method.
Resumo:
Durante los últimos años, el imparable crecimiento de fuentes de datos biomédicas, propiciado por el desarrollo de técnicas de generación de datos masivos (principalmente en el campo de la genómica) y la expansión de tecnologías para la comunicación y compartición de información ha propiciado que la investigación biomédica haya pasado a basarse de forma casi exclusiva en el análisis distribuido de información y en la búsqueda de relaciones entre diferentes fuentes de datos. Esto resulta una tarea compleja debido a la heterogeneidad entre las fuentes de datos empleadas (ya sea por el uso de diferentes formatos, tecnologías, o modelizaciones de dominios). Existen trabajos que tienen como objetivo la homogeneización de estas con el fin de conseguir que la información se muestre de forma integrada, como si fuera una única base de datos. Sin embargo no existe ningún trabajo que automatice de forma completa este proceso de integración semántica. Existen dos enfoques principales para dar solución al problema de integración de fuentes heterogéneas de datos: Centralizado y Distribuido. Ambos enfoques requieren de una traducción de datos de un modelo a otro. Para realizar esta tarea se emplean formalizaciones de las relaciones semánticas entre los modelos subyacentes y el modelo central. Estas formalizaciones se denominan comúnmente anotaciones. Las anotaciones de bases de datos, en el contexto de la integración semántica de la información, consisten en definir relaciones entre términos de igual significado, para posibilitar la traducción automática de la información. Dependiendo del problema en el que se esté trabajando, estas relaciones serán entre conceptos individuales o entre conjuntos enteros de conceptos (vistas). El trabajo aquí expuesto se centra en estas últimas. El proyecto europeo p-medicine (FP7-ICT-2009-270089) se basa en el enfoque centralizado y hace uso de anotaciones basadas en vistas y cuyas bases de datos están modeladas en RDF. Los datos extraídos de las diferentes fuentes son traducidos e integrados en un Data Warehouse. Dentro de la plataforma de p-medicine, el Grupo de Informática Biomédica (GIB) de la Universidad Politécnica de Madrid, en el cuál realicé mi trabajo, proporciona una herramienta para la generación de las necesarias anotaciones de las bases de datos RDF. Esta herramienta, denominada Ontology Annotator ofrece la posibilidad de generar de manera manual anotaciones basadas en vistas. Sin embargo, aunque esta herramienta muestra las fuentes de datos a anotar de manera gráfica, la gran mayoría de usuarios encuentran difícil el manejo de la herramienta , y pierden demasiado tiempo en el proceso de anotación. Es por ello que surge la necesidad de desarrollar una herramienta más avanzada, que sea capaz de asistir al usuario en el proceso de anotar bases de datos en p-medicine. El objetivo es automatizar los procesos más complejos de la anotación y presentar de forma natural y entendible la información relativa a las anotaciones de bases de datos RDF. Esta herramienta ha sido denominada Ontology Annotator Assistant, y el trabajo aquí expuesto describe el proceso de diseño y desarrollo, así como algunos algoritmos innovadores que han sido creados por el autor del trabajo para su correcto funcionamiento. Esta herramienta ofrece funcionalidades no existentes previamente en ninguna otra herramienta del área de la anotación automática e integración semántica de bases de datos. ---ABSTRACT---Over the last years, the unstoppable growth of biomedical data sources, mainly thanks to the development of massive data generation techniques (specially in the genomics field) and the rise of the communication and information sharing technologies, lead to the fact that biomedical research has come to rely almost exclusively on the analysis of distributed information and in finding relationships between different data sources. This is a complex task due to the heterogeneity of the sources used (either by the use of different formats, technologies or domain modeling). There are some research proyects that aim homogenization of these sources in order to retrieve information in an integrated way, as if it were a single database. However there is still now work to automate completely this process of semantic integration. There are two main approaches with the purpouse of integrating heterogeneous data sources: Centralized and Distributed. Both approches involve making translation from one model to another. To perform this task there is a need of using formalization of the semantic relationships between the underlying models and the main model. These formalizations are also calles annotations. In the context of semantic integration of the information, data base annotations consist on defining relations between concepts or words with the same meaning, so the automatic translation can be performed. Depending on the task, the ralationships can be between individuals or between whole sets of concepts (views). This paper focuses on the latter. The European project p-medicine (FP7-ICT-2009-270089) is based on the centralized approach. It uses view based annotations and RDF modeled databases. The data retireved from different data sources is translated and joined into a Data Warehouse. Within the p-medicine platform, the Biomedical Informatics Group (GIB) of the Polytechnic University of Madrid, in which I worked, provides a software to create annotations for the RDF sources. This tool, called Ontology Annotator, is used to create annotations manually. However, although Ontology Annotator displays the data sources graphically, most of the users find it difficult to use this software, thus they spend too much time to complete the task. For this reason there is a need to develop a more advanced tool, which would be able to help the user in the task of annotating p-medicine databases. The aim is automating the most complex processes of the annotation and display the information clearly and easy understanding. This software is called Ontology Annotater Assistant and this book describes the process of design and development of it. as well as some innovative algorithms that were designed by the author of the work. This tool provides features that no other software in the field of automatic annotation can provide.
Resumo:
El presente trabajo desarrolla un servicio REST que transforma frases en lenguaje natural a grafos RDF. Los grafos generados son grafos dirigidos, donde los nodos se forman con los sustantivos o adjetivos de las frases, y los arcos se forman con los verbos. Se utiliza dentro del proyecto p-medicine para dar soporte a las siguientes funcionalidades: Búsquedas en lenguaje natural: actualmente la plataforma p-medicine proporciona un interfaz programático para realizar consultas en SPARQL. El servicio desarrollado permitiría generar esas consultas automáticamente a partir de frases en lenguaje natural. Anotaciones de bases de datos mediante lenguaje natural: la plataforma pmedicine incorpora una herramienta, desarrollada por el Grupo de Ingeniería Biomédica de la Universidad Politécnica de Madrid, para la anotación de bases de datos RDF. Estas anotaciones son necesarias para la posterior traducción de las bases de datos a un esquema central. El proceso de anotación requiere que el usuario construya de forma manual las vistas RDF que desea anotar, lo que requiere mostrar gráficamente el esquema RDF y que el usuario construya vistas RDF seleccionando las clases y relaciones necesarias. Este proceso es a menudo complejo y demasiado difícil para un usuario sin perfil técnico. El sistema se incorporará para permitir que la construcción de estas vistas se realice con lenguaje natural. ---ABSTRACT---The present work develops a REST service that transforms natural language sentences to RDF degrees. Generated graphs are directed graphs where nodes are formed with nouns or adjectives of phrases, and the arcs are formed with verbs. Used within the p-medicine project to support the following functionality: Natural language queries: currently the p-medicine platform provides a programmatic interface to query SPARQL. The developed service would automatically generate those queries from natural language sentences. Memos databases using natural language: the p-medicine platform incorporates a tool, developed by the Group of Biomedical Engineering at the Polytechnic University of Madrid, for the annotation of RDF data bases. Such annotations are necessary for the subsequent translation of databases to a central scheme. The annotation process requires the user to manually construct the RDF views that he wants annotate, requiring graphically display the RDF schema and the user to build RDF views by selecting classes and relationships. This process is often complex and too difficult for a user with no technical background. The system is incorporated to allow the construction of these views to be performed with natural language.
Resumo:
The Web of Data currently comprises ? 62 billion triples from more than 2,000 different datasets covering many fields of knowledge3. This volume of structured Linked Data can be seen as a particular case of Big Data, referred to as Big Semantic Data [4]. Obviously, powerful computational configurations are tradi- tionally required to deal with the scalability problems arising to Big Semantic Data. It is not surprising that this ?data revolution? has competed in parallel with the growth of mobile computing. Smartphones and tablets are massively used at the expense of traditional computers but, to date, mobile devices have more limited computation resources. Therefore, one question that we may ask ourselves would be: can (potentially large) semantic datasets be consumed natively on mobile devices? Currently, only a few mobile apps (e.g., [1, 9, 2, 8]) make use of semantic data that they store in the mobile devices, while many others access existing SPARQL endpoints or Linked Data directly. Two main reasons can be considered for this fact. On the one hand, in spite of some initial approaches [6, 3], there are no well-established triplestores for mobile devices. This is an important limitation because any po- tential app must assume both RDF storage and SPARQL resolution. On the other hand, the particular features of these devices (little storage space, less computational power or more limited bandwidths) limit the adoption of seman- tic data for different uses and purposes. This paper introduces our HDTourist mobile application prototype. It con- sumes urban data from DBpedia4 to help tourists visiting a foreign city. Although it is a simple app, its functionality allows illustrating how semantic data can be stored and queried with limited resources. Our prototype is implemented for An- droid, but its foundations, explained in Section 2, can be deployed in any other platform. The app is described in Section 3, and Section 4 concludes about our current achievements and devises the future work.
Resumo:
In the last years, there has been an increase in the amount of real-time data generated. Sensors attached to things are transforming how we interact with our environment. Extracting meaningful information from these streams of data is essential for some application areas and requires processing systems that scale to varying conditions in data sources, complex queries, and system failures. This paper describes ongoing research on the development of a scalable RDF streaming engine.
Resumo:
In many applications (like social or sensor networks) the in- formation generated can be represented as a continuous stream of RDF items, where each item describes an application event (social network post, sensor measurement, etc). In this paper we focus on compressing RDF streams. In particular, we propose an approach for lossless RDF stream compression, named RDSZ (RDF Differential Stream compressor based on Zlib). This approach takes advantage of the structural similarities among items in a stream by combining a differential item encoding mechanism with the general purpose stream compressor Zlib. Empirical evaluation using several RDF stream datasets shows that this combi- nation produces gains in compression ratios with respect to using Zlib alone.
Resumo:
rights and conditions present in licenses for software, data and general works are expressed with the Open Digital Rights Language (ODRL) 2.0 vocabulary and extensions thereof. The dataset contains licenses identified by a dereferenceable URI, which are served with content negotiation providing a double representation for humans and machines alike. This feature enables a generalized machine-to-machine commerce if generally adopted.
Resumo:
RDF streams are sequences of timestamped RDF statements or graphs, which can be generated by several types of data sources (sensors, social networks, etc.). They may provide data at high volumes and rates, and be consumed by applications that require real-time responses. Hence it is important to publish and interchange them efficiently. In this paper, we exploit a key feature of RDF data streams, which is the regularity of their structure and data values, proposing a compressed, efficient RDF interchange (ERI) format, which can reduce the amount of data transmitted when processing RDF streams. Our experimental evaluation shows that our format produces state-of-the-art streaming compression, remaining efficient in performance.
Resumo:
La web semántica aporta un mayor conocimiento a los datos para que estos puedan ser procesados por las máquinas. Esto es posible gracias a estándares como por ejemplo Resource Framework Description (RDF). Éste, aporta un marco para que la información pueda ser representada de una manera más comprensible para las maquinas. Muchas veces la información no se encuentra codificada en RDF pero igualmente es interesante aprovecharse de sus características. Es por ello que surge la necesidad de crear una herramienta que permita consultas entre distintas fuentes de datos apoyándose en el estándar RDF independientemente del formato de origen de los datos. De esta manera se conseguirá realizar consultas entre las diversas fuentes, las cuales, sin la unificación en un estándar semántico, serían mucho más difíciles de conseguir.---ABSTRACT---The Semantic Web provides a new knowledge framework to data, therefore computers would become capable of analyzing the data. Standards, as Resource Framework Description (RDF), help to achieve it. RDF promotes the easier way for computers on how to describe data. Sometimes data are coded in a different way from RDF, nevertheless it would also be interesting to examine it. Accordingly, the need to create new software emerges. The software, based on RDF, would be able to combine information from different sources regardless of its format. Consequently, several sources, whatever their original formats were, could be queried on an easier way since a common semantic standard is available.
Resumo:
Gracias a las tecnologías semánticas y al paradigma de datos enlazados, cada día son más las iniciativas que se van sumando para formar parte de la gran nube de Datos Enlazados Abiertos. Este es el caso también del contexto bibliotecario, que ha identificado la necesidad de publicar y enlazar sus recursos bibliográficos para mejorar las búsquedas en sus repositorios y enriquecer sus datos con fuentes externas y con otras bibliotecas que se encuentran fomentando la misma iniciativa. No obstante, los diferentes tipos de modelos de representación, formatos, estándares, y herramientas de publicación hacen compleja, imprecisa y poco eficiente la tarea de búsqueda y recuperación de los recursos bibliográficos, debido a que la heterogeneidad de sus fuentes no garantiza una visibilidad desde sus bibliotecas y repositorios digitales hacia lo que actualmente se conoce como Web 3.0, limitando su descubrimiento y uso a un entorno únicamente dentro de la institución. De aquí nace la importancia y la necesidad de dar un giro en la forma de representar, procesar y publicar los recursos bibliográficos para que sean legibles por las máquinas. Una alternativa para alcanzar este objetivo es la aplicación de tencologías semánticas que ayuden a la representación del conocimiento con el uso de metadatos y ontologías, incorporando una formalización semántica de los elementos que permita describir de manera explicita a los recursos bibliográficos. Además, al incorporar el paradigma de datos enlazados se pretende publicar los recursos bibliográficos siguiendo un modelo RDF para formar parde de la Web de Datos en la que estos recursos bibliográficos se puedan mostrar, intercambiar y conectar mediante identificadores únicos con otras fuentes de información semánticamente representadas y enlazadas. En base a lo mencionado, el desarrollo de la presente tesis de fin de master pretende aplicar tecnologías semánticas para la representación de los recursos bibliográficos de la Biblioteca “Benjamín Carrión” de UTPL, y seguir un conjunto de buenas prácticas de Datos Enlazados que permitan enlazar, enriquecer y optimizar la búsqueda de los recursos y la interrelación con otras fuentes de datos externas que a futuro permitan formar parte de la nube de Datos Enlazados Abiertos.