2 resultados para RAREFIED PLASMA
em Universidad Politécnica de Madrid
Resumo:
The asymptotic structure of the far-wake behind a charged body in a rarefied plasma flow is investigated under the assumption of small ion-to-electron temperature ratio and of flow speed hypersonic with respect to the ions but not with respect to the electrons. It is found that waves are excited even if the flow is subacoustic (flow velocity less than the ion-acoustic speed). For both superacoustic and subacoustic velocities a steep wave front develops separating the weakly perturbed, quasineutral plasma ahead, from the region behind where ion waves appear. Near the axis a trailing front develops;the region between this and the axis is quasineutral for superacoustic speeds. The decay laws in all of these regions, the self-similar structure of the fronts and the general character of the waves are determined.The damping of the waves and special flow detail for bodies large and small compared with the Debye length are discussed. A nonlinear analysis of the leading wave front in superacoustic flow is carried out. A hyperacoustic equivalence principle is presented.
Resumo:
The recently noticed disagreement between ionospheric charged-particle temperature values obtained from ground-based (incoherent backscatter) and in situ (Langmuir probe type) measurements is considered; it is suggested that a main cause of disagreement lies in the poor theoretical basis of present in situ measurements. It is pointed out that the usually neglected geomagnetic field influence may result in too high an electron temperature. It is also shown that the theory used at present to interpret data from ion retarding potential analyzers has serious pitfalls, and that these devices greatly disturb the surrounding plasma when measuring ion temperature. Finally, it is shown how the ion temperature can be accurately obtained from the characteristic of a cylindrical Langmuir probe in a rarefied plasma flow.