28 resultados para RADIATION SCATTERING ANALYSIS

em Universidad Politécnica de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays integrated circuit reliability is challenged by both variability and working conditions. Environmental radiation has become a major issue when ensuring the circuit correct behavior. The required radiation and later analysis performed to the circuit boards is both fund and time expensive. The lack of tools which support pre-manufacturing radiation hardness analysis hinders circuit designers tasks. This paper describes an extensively customizable simulation tool for the characterization of radiation effects on electronic systems. The proposed tool can produce an in depth analysis of a complete circuit in almost any kind of radiation environment in affordable computation times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the scattering analysis of a circular cylindrical structure, the impedance boundary condition (IBC) can approximate and simplify the perfect electric conductor (PEC) boundary condition. The circular cylinder problem can be solved with modal methods but they require a large number of terms when the cylinder radius is large in terms of the wave length. The uniform theory of diffraction (UTD) [1] is commonly used to overcome this issue. The two-dimensional problem of scattering on a circular cylinder covered by a dielectric layer has been analyzed by [2]–[5], but their solutions either do not consider oblique incidence, fail on the transition region or use a constant surface impedance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a fully automatic goal-oriented hp-adaptive finite element strategy for open region electromagnetic problems (radiation and scattering) is presented. The methodology leads to exponential rates of convergence in terms of an upper bound of an user-prescribed quantity of interest. Thus, the adaptivity may be guided to provide an optimal error, not globally for the field in the whole finite element domain, but for specific parameters of engineering interest. For instance, the error on the numerical computation of the S-parameters of an antenna array, the field radiated by an antenna, or the Radar Cross Section on given directions, can be minimized. The efficiency of the approach is illustrated with several numerical simulations with two dimensional problem domains. Results include the comparison with the previously developed energy-norm based hp-adaptivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This Doctoral Thesis entitled Contribution to the analysis, design and assessment of compact antenna test ranges at millimeter wavelengths aims to deepen the knowledge of a particular antenna measurement system: the compact range, operating in the frequency bands of millimeter wavelengths. The thesis has been developed at Radiation Group (GR), an antenna laboratory which belongs to the Signals, Systems and Radiocommunications department (SSR), from Technical University of Madrid (UPM). The Radiation Group owns an extensive experience on antenna measurements, running at present four facilities which operate in different configurations: Gregorian compact antenna test range, spherical near field, planar near field and semianechoic arch system. The research work performed in line with this thesis contributes the knowledge of the first measurement configuration at higher frequencies, beyond the microwaves region where Radiation Group features customer-level performance. To reach this high level purpose, a set of scientific tasks were sequentially carried out. Those are succinctly described in the subsequent paragraphs. A first step dealed with the State of Art review. The study of scientific literature dealed with the analysis of measurement practices in compact antenna test ranges in addition with the particularities of millimeter wavelength technologies. Joint study of both fields of knowledge converged, when this measurement facilities are of interest, in a series of technological challenges which become serious bottlenecks at different stages: analysis, design and assessment. Thirdly after the overview study, focus was set on Electromagnetic analysis algorithms. These formulations allow to approach certain electromagnetic features of interest, such as field distribution phase or stray signal analysis of particular structures when they interact with electromagnetic waves sources. Properly operated, a CATR facility features electromagnetic waves collimation optics which are large, in terms of wavelengths. Accordingly, the electromagnetic analysis tasks introduce an extense number of mathematic unknowns which grow with frequency, following different polynomic order laws depending on the used algorithmia. In particular, the optics configuration which was of our interest consisted on the reflection type serrated edge collimator. The analysis of these devices requires a flexible handling of almost arbitrary scattering geometries, becoming this flexibility the nucleus of the algorithmia’s ability to perform the subsequent design tasks. This thesis’ contribution to this field of knowledge consisted on reaching a formulation which was powerful at the same time when dealing with various analysis geometries and computationally speaking. Two algorithmia were developed. While based on the same principle of hybridization, they reached different order Physics performance at the cost of the computational efficiency. Inter-comparison of their CATR design capabilities was performed, reaching both qualitative as well as quantitative conclusions on their scope. In third place, interest was shifted from analysis - design tasks towards range assessment. Millimetre wavelengths imply strict mechanical tolerances and fine setup adjustment. In addition, the large number of unknowns issue already faced in the analysis stage appears as well in the on chamber field probing stage. Natural decrease of dynamic range available by semiconductor millimeter waves sources requires in addition larger integration times at each probing point. These peculiarities increase exponentially the difficulty of performing assessment processes in CATR facilities beyond microwaves. The bottleneck becomes so tight that it compromises the range characterization beyond a certain limit frequency which typically lies on the lowest segment of millimeter wavelength frequencies. However the value of range assessment moves, on the contrary, towards the highest segment. This thesis contributes this technological scenario developing quiet zone probing techniques which achieves substantial data reduction ratii. Collaterally, it increases the robustness of the results to noise, which is a virtual rise of the setup’s available dynamic range. In fourth place, the environmental sensitivity of millimeter wavelengths issue was approached. It is well known the drifts of electromagnetic experiments due to the dependance of the re sults with respect to the surrounding environment. This feature relegates many industrial practices of microwave frequencies to the experimental stage, at millimeter wavelengths. In particular, evolution of the atmosphere within acceptable conditioning bounds redounds in drift phenomena which completely mask the experimental results. The contribution of this thesis on this aspect consists on modeling electrically the indoor atmosphere existing in a CATR, as a function of environmental variables which affect the range’s performance. A simple model was developed, being able to handle high level phenomena, such as feed - probe phase drift as a function of low level magnitudes easy to be sampled: relative humidity and temperature. With this model, environmental compensation can be performed and chamber conditioning is automatically extended towards higher frequencies. Therefore, the purpose of this thesis is to go further into the knowledge of millimetre wavelengths involving compact antenna test ranges. This knowledge is dosified through the sequential stages of a CATR conception, form early low level electromagnetic analysis towards the assessment of an operative facility, stages for each one of which nowadays bottleneck phenomena exist and seriously compromise the antenna measurement practices at millimeter wavelengths.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit using materials of negative dielectric and magnetic constants. Recently, two devices with positive refraction, the Maxwell Fish Eye lens (MFE) (Leonhardt et al 2000) and the Spherical Geodesic Waveguide (SGW)(Minano et all 2011) have been claimed to break the diffraction limit using positive refraction with a different meaning. In these cases, it has been considered the power transmission from a point source to a point receptor, which falls drastically when the receptor is displaced from the focus by a distance much smaller than the wavelength. Moreover, recent analysis of the SGW with defined object and image surfaces, which are both conical sections of the sphere, has shown that the system transmits images bellow diffraction limit. The key assumption is the use of a perfectly absorbing receptor called perfect drain. This receptor is capable to absorb all the radiation without reflection or scattering. Here, it is presented the COMSOL analysis of the SGW using a perfect drain that absorbs perfectly two modes. The design procedure for PD capable to absorb k modes is proposed, as well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analysis of Neutron Thermal Scattering Data Uncertainties in PWRs

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the thin-film photovoltaic industry, to achieve a high light scattering in one or more of the cell interfaces is one of the strategies that allow an enhancement of light absorption inside the cell and, therefore, a better device behavior and efficiency. Although chemical etching is the standard method to texture surfaces for that scattering improvement, laser light has shown as a new way for texturizing different materials, maintaining a good control of the final topography with a unique, clean, and quite precise process. In this work AZO films with different texture parameters are fabricated. The typical parameters used to characterize them, as the root mean square roughness or the haze factor, are discussed and, for deeper understanding of the scattering mechanisms, the light behavior in the films is simulated using a finite element method code. This method gives information about the light intensity in each point of the system, allowing the precise characterization of the scattering behavior near the film surface, and it can be used as well to calculate a simulated haze factor that can be compared with experimental measurements. A discussion of the validation of the numerical code, based in a comprehensive comparison with experimental data is included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis contributes to the analysis and design of printed reflectarray antennas. The main part of the work is focused on the analysis of dual offset antennas comprising two reflectarray surfaces, one of them acts as sub-reflector and the second one acts as mainreflector. These configurations introduce additional complexity in several aspects respect to conventional dual offset reflectors, however they present a lot of degrees of freedom that can be used to improve the electrical performance of the antenna. The thesis is organized in four parts: the development of an analysis technique for dualreflectarray antennas, a preliminary validation of such methodology using equivalent reflector systems as reference antennas, a more rigorous validation of the software tool by manufacturing and testing a dual-reflectarray antenna demonstrator and the practical design of dual-reflectarray systems for some applications that show the potential of these kind of configurations to scan the beam and to generate contoured beams. In the first part, a general tool has been implemented to analyze high gain antennas which are constructed of two flat reflectarray structures. The classic reflectarray analysis based on MoM under local periodicity assumption is used for both sub and main reflectarrays, taking into account the incident angle on each reflectarray element. The incident field on the main reflectarray is computed taking into account the field radiated by all the elements on the sub-reflectarray.. Two approaches have been developed, one which employs a simple approximation to reduce the computer run time, and the other which does not, but offers in many cases, improved accuracy. The approximation is based on computing the reflected field on each element on the main reflectarray only once for all the fields radiated by the sub-reflectarray elements, assuming that the response will be the same because the only difference is a small variation on the angle of incidence. This approximation is very accurate when the reflectarray elements on the main reflectarray show a relatively small sensitivity to the angle of incidence. An extension of the analysis technique has been implemented to study dual-reflectarray antennas comprising a main reflectarray printed on a parabolic surface, or in general in a curved surface. In many applications of dual-reflectarray configurations, the reflectarray elements are in the near field of the feed-horn. To consider the near field radiated by the horn, the incident field on each reflectarray element is computed using a spherical mode expansion. In this region, the angles of incidence are moderately wide, and they are considered in the analysis of the reflectarray to better calculate the actual incident field on the sub-reflectarray elements. This technique increases the accuracy for the prediction of co- and cross-polar patterns and antenna gain respect to the case of using ideal feed models. In the second part, as a preliminary validation, the proposed analysis method has been used to design a dual-reflectarray antenna that emulates previous dual-reflector antennas in Ku and W-bands including a reflectarray as subreflector. The results for the dualreflectarray antenna compare very well with those of the parabolic reflector and reflectarray subreflector; radiation patterns, antenna gain and efficiency are practically the same when the main parabolic reflector is substituted by a flat reflectarray. The results show that the gain is only reduced by a few tenths of a dB as a result of the ohmic losses in the reflectarray. The phase adjustment on two surfaces provided by the dual-reflectarray configuration can be used to improve the antenna performance in some applications requiring multiple beams, beam scanning or shaped beams. Third, a very challenging dual-reflectarray antenna demonstrator has been designed, manufactured and tested for a more rigorous validation of the analysis technique presented. The proposed antenna configuration has the feed, the sub-reflectarray and the main-reflectarray in the near field one to each other, so that the conventional far field approximations are not suitable for the analysis of such antenna. This geometry is used as benchmarking for the proposed analysis tool in very stringent conditions. Some aspects of the proposed analysis technique that allow improving the accuracy of the analysis are also discussed. These improvements include a novel method to reduce the inherent cross polarization which is introduced mainly from grounded patch arrays. It has been checked that cross polarization in offset reflectarrays can be significantly reduced by properly adjusting the patch dimensions in the reflectarray in order to produce an overall cancellation of the cross-polarization. The dimensions of the patches are adjusted in order not only to provide the required phase-distribution to shape the beam, but also to exploit the crosses by zero of the cross-polarization components. The last part of the thesis deals with direct applications of the technique described. The technique presented is directly applicable to the design of contoured beam antennas for DBS applications, where the requirements of cross-polarisation are very stringent. The beam shaping is achieved by synthesithing the phase distribution on the main reflectarray while the sub-reflectarray emulates an equivalent hyperbolic subreflector. Dual-reflectarray antennas present also the ability to scan the beam over small angles about boresight. Two possible architectures for a Ku-band antenna are also described based on a dual planar reflectarray configuration that provides electronic beam scanning in a limited angular range. In the first architecture, the beam scanning is achieved by introducing a phase-control in the elements of the sub-reflectarray and the mainreflectarray is passive. A second alternative is also studied, in which the beam scanning is produced using 1-bit control on the main reflectarray, while a passive subreflectarray is designed to provide a large focal distance within a compact configuration. The system aims to develop a solution for bi-directional satellite links for emergency communications. In both proposed architectures, the objective is to provide a compact optics and simplicity to be folded and deployed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient approach for the simulation of ion scattering from solids is proposed. For every encountered atom, we take multiple samples of its thermal displacements among those which result in scattering with high probability to finally reach the detector. As a result, the detector is illuminated by intensive “showers,” where each event of detection must be weighted according to the actual probability of the atom displacement. The computational cost of such simulation is orders of magnitude lower than in the direct approach, and a comprehensive analysis of multiple and plural scattering effects becomes possible. We use this method for two purposes. First, the accuracy of the approximate approaches, developed mainly for ion-beam structural analysis, is verified. Second, the possibility to reproduce a wide class of experimental conditions is used to analyze some basic features of ion-solid collisions: the role of double violent collisions in low-energy ion scattering; the origin of the “surface peak” in scattering from amorphous samples; the low-energy tail in the energy spectra of scattered medium-energy ions due to plural scattering; and the degradation of blocking patterns in two-dimensional angular distributions with increasing depth of scattering. As an example of simulation for ions of MeV energies, we verify the time reversibility for channeling and blocking of 1-MeV protons in a W crystal. The possibilities of analysis that our approach offers may be very useful for various applications, in particular, for structural analysis with atomic resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct-drive inertial confinement thermonuclear fusion consists in illuminating a shell of cryogenic Deuterium and Tritium (DT) mixture with many intense beams of laser light. Capsule is composed of DT gassurrounded by cryogenic DT as combustible fuel. Basic rules are used to define shell geometry from aspect ratio, fuel mass and layers densities. We define baseline designs using two aspect ratio (A=3 and A=5) who complete HiPER baseline design (A=7.7). Aspect ratio is defined as the ratio of ice DT shell inner radius over DT shell thickness. Low aspect ratio improves hydrodynamics stabilities of imploding shell. Laser impulsion shape and ablator thickness are initially defined by using Lindl (1995) pressure ablation and mass ablation formulae for direct-drive using CH layer as ablator. In flight adiabat parameter is close to one during implosion. Velocitie simplosions chosen are between 260 km/s and 365 km/s. More than thousand calculations are realized for each aspect ratio in order to optimize the laser pulse shape. Calculations are performed using the one-dimensional version of the Lagrangian radiation hydrodynamics FCI2. We choose implosion velocities for each initial aspect ratio, and we compute scaled-target family curves for each one to find self-ignition threshold. Then, we pick points on each curves that potentially product high thermonuclear gain and compute shock ignition in the context of Laser MegaJoule. This systematic analyze reveals many working points which complete previous studies ´allowing to highlight baseline designs, according to laser intensity and energy, combustible mass and initial aspect ratio to be relevant for Laser MegaJoule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este proyecto, titulado “Caracterización de colectores para concentración fotovoltaica”, consiste en una aplicación en Labview para obtener las características de los elementos ópticos utilizados en sistemas de concentración fotovoltaica , atendiendo a la distribución espacial del foco de luz concentrado que generan. Un sistema de concentración fotovoltaica utiliza un sistema óptico para transmitir la radiación luminosa a la célula solar aumentando la densidad de potencia luminosa. Estos sistemas ópticos están formados por espejos o lentes para recoger la radiación incidente en ellos y concentrar el haz de luz en una superficie mucho menor. De esta manera se puede reducir el área de material semiconductor necesario, lo que conlleva una importante reducción del coste del sistema. Se pueden distinguir diferentes sistemas de concentración dependiendo de la óptica que emplee, la estructura del receptor o el rango de concentración. Sin embargo, ya que el objetivo es analizar la distribución espacial, diferenciaremos dos tipos de concentradores dependiendo de la geometría que presenta el foco de luz. El concentrador lineal o cilíndrico que enfoca sobre una línea, y el concentrador de foco puntual o circular que enfoca la luz sobre un punto. Debido a esta diferencia el análisis en ambos casos se realizará de forma distinta. El análisis se realiza procesando una imagen del foco tomada en el lugar del receptor, este método se llama LS-CCD (Difusión de luz y captura con CCD). Puede utilizarse en varios montajes dependiendo si se capta la imagen por reflexión o por transmisión en el receptor. En algunos montajes no es posible captar la imagen perpendicular al receptor por lo que la aplicación realizará un ajuste de perspectiva para obtener el foco con su forma original. La imagen del foco ofrece información detallada acerca de la uniformidad del foco mediante el mapa de superficie, que es una representación en 3D de la imagen pero que resulta poco manejable. Una representación más sencilla y útil es la que ofrecen los llamados “perfiles de intensidad”. El perfil de intensidad o distribución de la irradiancia que representa la distribución de la luz para cada distancia al centro, y el perfil acumulado o irradiancia acumulada que representa la luz contenida en relación también al centro. Las representaciones de estos perfiles en el caso de un concentrador lineal y otro circular son distintas debido a su diferente geometría. Mientras que para un foco lineal se expresa el perfil en función de la semi-anchura del receptor, para uno circular se expresa en función del radio. En cualquiera de los casos ofrecen información sobre la uniformidad y el tamaño del foco de luz necesarios para diseñar el receptor. El objetivo de este proyecto es la creación de una aplicación software que realice el procesado y análisis de las imágenes obtenidas del foco de luz de los sistemas ópticos a caracterizar. La aplicación tiene una interfaz sencilla e intuitiva para que pueda ser empleada por cualquier usuario. Los recursos necesarios para realizar el proyecto son: un PC con sistema operativo Windows, el software Labview 8.6 Professional Edition y los módulos NI Vision Development Module (para trabajar con imágenes) y NI Report Generation Toolkit (para realizar reportes y guardar datos de la aplicación). ABSTRACT This project, called “Characterization of collectors for concentration photovoltaic systems”, consists in a Labview application to obtain the characteristics of the optical elements used in photovoltaic concentrator, taking into account the spatial distribution of concentrated light source generated. A concentrator photovoltaic system uses an optical system to transmit light radiation to the solar cell by increasing the light power density. This optical system are formed by mirrors or lenses to collect the radiation incident on them and focus the beam of light in a much smaller surface area. In this way you can reduce the area of semiconductor material needed, which implies a significant reduction in system cost. There are different concentration systems depending on the optics used, receptor structure or concentration range. However, as the aim is to analyze the spatial distribution, distinguish between two types of concentrators depending on the geometry that has the light focus. The linear or cylindrical concentrator that focused on a line, and the circular concentrator that focused light onto a point. Because this difference in both cases the analysis will be carried out differently. The analysis is performed by processing a focus image taken at the receiver site, this method is called “LS-CCD” (Light Scattering and CCD recording). Can be used in several mountings depending on whether the image is captured by reflection or transmission on the receiver. In some mountings it is not possible to capture the image perpendicular to the receivers so that the application makes an adjustment of perspective to get the focus to its original shape. The focus image provides detail information about the uniformity of focus through the surface map, which is a 3D image representation but it is unwieldy. A simple and useful representation is provided by so called “intensity profiles”. The intensity profile or irradiance distribution which represents the distribution of light to each distance to the center. The accumulated profile or accumulated irradiance that represents the cumulative light contained in relation also to the center. The representation of these profiles in the case of a linear and a circular concentrator are different due to their distinct geometry. While for a line focus profile is expressed in terms of semi-width of the receiver, for a circular concentrator is expressed in terms of radius. In either case provides information about the uniformity and size of focus needed to design the receiver. The objective of this project is the creation of a software application to perform processing and analysis of images obtained from light source of optical systems to characterize.The application has a simple and a intuitive interface so it can be used for any users. The resources required for the project are: a PC with Windows operating system, LabVIEW 8.6 Professional Edition and the modules NI Vision Development Module (for working with images) and NI Report Generation Toolkit (for reports and store application data .)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is a preliminary studio of the possibility of assess a relationship between solar radiation and watercore development on apple fruit, during maturation, using a non destructive method such as Magnetic Resonance Imaging (MRI). For such purpose, several low cost solar radiation sensors were designed for the trial and placed at 2 different heights (1.5 and 2.5 m) on 6 adult ?Esperiega? apple trees, in a commercial orchard in Ademuz (Valencia). Sensors were connected along 27 days, during the end of the growth period and start of the fruit maturation process, and radiation measurements of the a-Si sensors were recorded every 1 minute. At the end of this period, fruits from the upper and the lower part of the canopy of each tree were harvested. In all, 152 apples were collected and images with MRI. A Principal Component Analysis, perfomed over the histograms of the images, as well as segmentation methods were performed on the MR images in order to find a pattern involving solar radiation and watercore incidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solaR package allows for reproducible research both for photovoltaics (PV) systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems. It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems. Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perfect drain for the Maxwell Fish Eye (MFE) is a nonmagnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity ? that depends on frequency. However, this material is only a theoretical material, so it can not be used in practical devices. Recently, the perfect drain has been claimed as necessary to achieve super-resolution [Leonhard 2009, New J. Phys. 11 093040], which has increased the interest for practical perfect drains suitable for manufacturing. Here, we analyze the superresolution properties of a device equivalent to the MFE, known as Spherical Geodesic Waveguide (SGW), loaded with the perfect drain. In the SGW the source and drain are implemented with coaxial probes. The perfect drain is realized using a circuit (made of a resistance and a capacitor) connected to the drain coaxial probes. Superresolution analysis for this device is done in Comsol Multiphysics. The results of simulations predict the superresolution up to ? /3000 and optimum power transmission from the source to the drain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the performance of an innovative receiver for linear Fresnel reflectors is carried out in this paper, and the results are analyzed with a physics perspective of the process. The receiver consists of a bundle of tubes parallel to the mirror arrays, resulting on a smaller cross section for the same receiver width as the number of tubes increases, due to the diminution of their diameter. This implies higher heat carrier fluid speeds, and thus, a more effective heat transfer process, although it conveys higher pumping power as well. Mass flow is optimized for different tubes diameters, different impinging radiation intensities and different fluid inlet temperatures. It is found that the best receiver design, namely the tubes diameter that maximizes the exergetic efficiency for given working conditions, is similar for the cases studied. There is a range of tubes diameters that imply similar efficiencies, which can drive to capital cost reduction thanks to the flexibility of design. In addition, the length of the receiver is also optimized, and it is observed that the optimal length is similar for the working conditions considered. As a result of this study, it is found that this innovative receiver provides an optimum design for the whole day, even though impinging radiation intensity varies notably. Thermal features of this type of receiver could be the base of a new generation of concentrated solar power plants with a great potential for cost reduction, because of the simplicity of the system and the lower weigh of the components, plus the flexibility of using the receiver tubes for different streams of the heat carrier fluid.