3 resultados para Régine Robin
em Universidad Politécnica de Madrid
Resumo:
The increasing importance of pollutant noise has led to the creation of many new noise testing laboratories in recent years. For this reason and due to the legal implications that noise reporting may have, it is necessary to create procedures intended to guarantee the quality of the testing and its results. For instance, the ISO/IEC standard 17025:2005 specifies general requirements for the competence of testing laboratories. In this standard, interlaboratory comparisons are one of the main measures that must be applied to guarantee the quality of laboratories when applying specific methodologies for testing. In the specific case of environmental noise, round robin tests are usually difficult to design, as it is difficult to find scenarios that can be available and controlled while the participants carry out the measurements. Monitoring and controlling the factors that can influence the measurements (source emissions, propagation, background noise…) is not usually affordable, so the most extended solution is to create very effortless scenarios, where most of the factors that can have an influence on the results are excluded (sampling, processing of results, background noise, source detection…) The new approach described in this paper only requires the organizer to make actual measurements (or prepare virtual ones). Applying and interpreting a common reference document (standard, regulation…), the participants must analyze these input data independently to provide the results, which will be compared among the participants. The measurement costs are severely reduced for the participants, there is no need to monitor the scenario conditions, and almost any relevant factor can be included in this methodology
Resumo:
Within the European funded project SOPHIA, a Round Robin measurement on CPV module has been initiated. Seven different test laboratories located in Europe between 48°N and 37°N perform measurements of four SOITEC CPV modules. The modules are electrically characterized with different measurement equipment under various climatic conditions. One pyrheliometer and one spectral sensor based on component cells are shipped together with the modules. This ensures that the irradiance and spectrum, two factors with high impact on CPV module performance, are measured with the identical equipment at each site. The round robin activity is performed in closeco-operation with the IEC TC82 WG7 power rating team in order to support the work on the CPV module power rating draft standard 62670-3. The resultingrated module power outputs at CSOC (Concentrator Standard Operating Conditions) are compared amongst the power rating methods and amongst the test labs. In this manner, a deviation in rated power output between different test labs and power rating methods is determined.
Resumo:
In the frame of the European project SOPHIA a concentrator photovoltaic (CPV) module measurement round robin has been initiated. The round robin includes measurements of four CPV modules at seven different test laboratories located in Europe. IV curves of the modules are measured with different measurement equipment under various climatic conditions. The aim of this activity is to perform at each site a rating of the modules at concentrator standard operating conditions CSOC according to IEC 62670-1. The outcome of the round robin is intended for direct feedback to the current draft standard IEC 62670-3 “Concentrator Photovoltaic (CPV) Performance Testing - Performance Measurements and Power Rating”. The paper discusses initial results from the first three partners that have already finished the measurements up to now.