27 resultados para Quasi-1D confinement

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The linear stability analysis of accelerated double ablation fronts is carried out numerically with a self-consistent approach. Accurate hydrodynamic profiles are taken into account in the theoretical model by means of a fitting parameters method using 1D simulation results. Numerical dispersión relation is compared to an analytical sharp boundary model [Yan˜ez et al., Phys. Plasmas 18, 052701 (2011)] showing an excellent agreement for the radiation dominated regime of very steep ablation fronts, and the stabilization due to smooth profiles. 2D simulations are presented to validate the numerical self-consistent theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seeding plasma-based softx-raylaser (SXRL) demonstrated diffraction-limited, fully coherent in space and in time beam but with energy not exceeding 1 μJ per pulse. Quasi-steady-state (QSS) plasmas demonstrated to be able to store high amount of energy and then amplify incoherent SXRL up to several mJ. Using 1D time-dependant Bloch–Maxwell model including amplification of noise, we demonstrated that femtosecond HHG cannot be efficiently amplified in QSS plasmas. However, using Chirped Pulse Amplification concept on HHG seed allows to extract most of the stored energy, reaching up to 5 mJ in fully coherent pulses that can be compressed down to 130 fs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims at identifying commonpotentialproblems that futurefusiondevices will encounter for both magnetic and inertialconfinement approaches in order to promote joint efforts and to avoid duplication of research. Firstly, a comparison of radiation environments found in both fusion reaction chambers will be presented. Then, wall materials, optical components, cables and electronics will be discussed, pointing to possible future areas of common research. Finally, a brief discussion of experimental techniques available to simulate the radiation effect on materials is included

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After 10s the 90-99% of particles are released from the tungsten wall, mostly, towards the chamber. No element crosses the tungsten wall to the cooler. With 1x1022p/m2of He inside the W wall, He starts occasioning damages in the material. For case HiPER4a that is not a problem

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal grid lines are a vital element in multijunction solar cells in order to take out from the cell the generated photocurrent. Nevertheless all this implies certain shadowing factor and thus certain reflectivity on cells surface that lowers its light absorption. This reflectivity produces a loss in electrical efficiency and thus a loss in global energy production for CPV systems. We present here an optical design for recovering this portion of reflected light, and thus leading to a system efficiency increase. This new design is based on an external confinement cavity, an optical element able to redirect the light reflected by the cell towards its surface again. It has been possible thanks to the recent invention of the advanced Köhler concentrators by LPI, likely to integrate one of these cavities easily. We have proven the excellent performance of these cavities integrated in this kind of CPV modules offering outstanding results: 33.2% module electrical efficiency @Tcell=25ºC and relative efficiency and Isc gains of over 6%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multijunction solar cells present a certain reflectivity on its surface that lowers its light absorption. This reflectivity produces a loss in electrical efficiency and thus a loss in global energy production for CPV systems. We present here an optical design for recovering this portion of reflected light, and thus leading to a system efficiency increase. This new design is based on an external confinement cavity, an optical element able to redirect the light reflected by the cell towards its surface again. We have proven the excellent performance of these cavities integrated in CPV modules offering outstanding results: 33.2% module electrical efficiency @Tcell  =  25 °C and relative efficiency and Isc gains of over 6%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of inertial confinement fusion is the production of energy by the fusion of thermonuclear fuel (deuterium-tritium) enclosed in a spherical target due to its implosion. In the direct-drive approach, the energy needed to spark fusion reactions is delivered by the irradiation of laser beams that leads to the ablation of the outer shell of the target (the so-called ablator). As a reaction to this ablation process, the target is accelerated inwards, and, provided that this implosion is sufficiently strong a symmetric, the requirements of temperature and pressure in the center of the target are achieved leading to the ignition of the target (fusion). One of the obstacles capable to prevent appropriate target implosions takes place in the ablation region where any perturbation can grow even causing the ablator shell break, due to the ablative Rayleigh-Taylor instability. The ablative Rayleigh-Taylor instability has been extensively studied throughout the last 40 years in the case where the density/temperature profiles in the ablation region present a single front (the ablation front). Single ablation fronts appear when the ablator material has a low atomic number (deuterium/tritium ice, plastic). In this case, the main mechanism of energy transport from the laser energy absorption region (low density plasma) to the ablation region is the electron thermal conduction. However, recently, the use of materials with a moderate atomic number (silica, doped plastic) as ablators, with the aim of reducing the target pre-heating caused by suprathermal electrons generated by the laser-plasma interaction, has demonstrated an ablation region composed of two ablation fronts. This fact appears due to increasing importance of radiative effects in the energy transport. The linear theory describing the Rayleigh-Taylor instability for single ablation fronts cannot be applied for the stability analysis of double ablation front structures. Therefore, the aim of this thesis is to develop, for the first time, a linear stability theory for this type of hydrodynamic structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a model of nonequilibrium quantum transport of particles and energy in a many-body system connected to mesoscopic Fermi reservoirs (the so-called meso-reservoirs). We discuss the conservation laws of particles and energy within our setup as well as the transport properties of quasi-periodic and disordered chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solar cell is a solid state device that converts the energy of sunlight directly into electricity by the photovoltaic effect. When light with photon energies greater than the band gap is absorbed by a semiconductor material, free electrons and free holes are generated by optical excitation in the material. The main characteristic of a photovoltaic device is the presence of internal electric field able to separate the free electrons and holes so they can pass out of the material to the external circuit before they recombine. Numerical simulation of photovoltaic devices plays a crucial role in their design, performance prediction, and comprehension of the fundamental phenomena ruling their operation. The electrical transport and the optical behavior of the solar cells discussed in this work were studied with the simulation code D-AMPS-1D. This software is an updated version of the one-dimensional (1D) simulation program Analysis of Microelectronic and Photonic Devices (AMPS) that was initially developed at The Penn State University, USA. Structures such as homojunctions, heterojunctions, multijunctions, etc., resulting from stacking layers of different materials can be studied by appropriately selecting characteristic parameters. In this work, examples of cells simulation made with D-AMPS-1D are shown. Particularly, results of Ge photovoltaic devices are presented. The role of the InGaP buffer on the device was studied. Moreover, a comparison of the simulated electrical parameters with experimental results was performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear fusion cross-section is modified when the spins of the interacting nuclei are polarized. In the case of deuterium?tritium it has been theoretically predicted that the nuclear fusion cross-section could be increased by a factor d = 1.5 if all the nuclei were polarized. In inertial confinement fusion this would result in a modification of the required ignition conditions. Using numerical simulations it is found that the required hot-spot temperature and areal density can both be reduced by about 15% for a fully polarized nuclear fuel. Moreover, numerical simulations of a directly driven capsule show that the required laser power and energy to achieve a high gain scale as d-0.6 and d-0.4 respectively, while the maximum achievable energy gain scales as d0.9.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of cyclic loading tests on two large-scale reinforced concrete structural walls that were conducted at Purdue University. One of the walls had confinement reinforcement meeting ACI-318-11 requirements while the other wall did not have any confinement reinforcement. The walls were tested as part of a larger study aimed at indentifying parameters affecting failure modes observed to limit the drift capacity of structural walls in Chile during the Maule Earthquake of 2010. These failure modes include out-of-plane buckling (of the wall rather tan individual reinforcing bars), compression failure, and bond failure. This paper discusses the effects of confinement on failure mode. Distributions of unit strain and curvature obtained with a dense array of non-contact coordinate-tracking targets are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systems inertial confinement fusion (ICF) need of a manufacturing process targets very accurate and efficient (Fig. A). Due to the frequency needed for energy production techniques are necessary to achieve high repetition rates, however it is also necessary to increase or maintain the quality and efficiency of these targets. In order to observe more resolution possible problems in the target manufacture (B), we propose the following theoretical methodology, by means of which analyze different phenomena present in the conditions which are fabrication and handled deuterium tritium target spheres (DT ice). Recent experiments show that addition of instabilities caused by the geometry of the solid layer of DT ice (C), and the cover (ablator), one can relate the loss of power delivery in the implosion due to different conformations of the solid layers with regarding handling conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two quasi-aplanatic free-form solid V-groove collimators are presented in this work. Both optical designs are originally designed using the Simultaneous Multiple Surface method in three dimensions (SMS 3D). The second optically active surface in both free-form V-groove devices is designed a posteriori as a grooved surface. First two mirror (XX) design is designed in order to clearly show the design procedure and working principle of these devices. Second, RXI free-form design is comparable with existing RXI collimators; it is a compact and highly efficient design made of polycarbonate (PC) performing very good colour mixing of the RGGB LED sources placed off-axis. There have been presented rotationally symmetric non-aplanatic high efficiency collimators with colour mixing property to be improved and rotationally symmetric aplanatic devices with good colour mixing property and efficiency to be improved. The aim of this work was to design a free-form device in order to improve colour mixing property of the rotationally symmetric nonaplanatic RXI devices and the efficiency of the aplanatic ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Final lenses in laser fusion plants. Challenges for the protection of the final lenses. Plasmonic nanoparticles. Radiation resistance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital chaotic behavior in an optically processing element is reported. It is obtained as the result of processing two fixed train of bits. The process is performed with an Optically Programmable Logic Gate. Possible outputs for some specific conditions of the circuit are given. These outputs have some fractal characteristics, when input variations are considered. Digital chaotic behavior is obtained by using a feedback configuration. A random-like bit generator is presented.