3 resultados para Quantum harmonic oscillator
em Universidad Politécnica de Madrid
Resumo:
El presente trabajo tiene como objetivo el desarrollo de un patrón primario para la calibración de sensores de fuerza bajo excitaciones sinusoidales. Con consecuencia de dicho desarrollo se establecerá un método de calibración de sensores de fuerza en condiciones dinámicas que permitirá la caracterización de estos sensores en dichas condiciones y determinar la incertidumbre asociada. Este patrón se basa en la definición directa de fuerza como masa por aceleración. Para ello se carga el sensor con distintas cargas calibradas y se somete a distintas aceleraciones mediante un excitador de vibraciones. Dichas aceleraciones se generan para frecuencias desde 5 Hz a 2400 Hz. La aceleración se mide mediante un vibrómetro láser con trazabilidad a la unidad de longitud (longitud de onda del láser). Al ser una medición completamente dinámica se necesita un sistema de adquisición de datos multicanal para la toma de datos en tiempo real. Este sistema adquiere las señales eléctricas provenientes del vibrómetro láser, del sensor a caracterizar y del acelerómetro para mediciones auxiliares. Se ha dispuesto de cuatro sensores de fuerza para realizar ensayos, un sensor piezoeléctrico y tres sensores resistivos. En este trabajo se han estudiado los factores de influencia y se ha implementado un método de calibración para minimizar los mismos, así como también se han establecido las correcciones a realizar. Para la caracterización dinámica del sensor se ha partido de un modelo de oscilador armónico amortiguado forzado, se ha establecido la metodología para la determinación de sus parámetros de caracterización y se ha estudiado su validez. También se ha realizado una comparación entre los resultados obtenidos para condiciones estáticas y dinámicas. ABSTRACT The aim in the current work is the development of a primary standard for force sensors calibration under sinusoidal excitations. As consequence of this development a method for force sensors calibration under dynamic conditions will be established that will allow these sensors characterization for such conditions and the determination of their associated uncertainty. This standard is based on the direct definition of force as mass multiplied by acceleration. To do so, the sensor is loaded with different calibrated loads and is maintained under different accelerations by means of a vibration shaker. These accelerations are generated with frequencies from 5 Hz up to 2400 Hz. The acceleration is measured by means of a laser vibrometer with traceability to the unit of length (laser wavelength). As the measurement is totally dynamic a multiple channel data acquisition system is required for data acquisition in real time. This system acquires the electrical signals outputs coming from the laser vibrometer, the sensor to be characterised and two accelerometers for additional measurements. Four force sensors, one piezoelectric sensor and three resistive sensors, have been available to perform the tests. During this work the influence factors have been studied and a calibration method to minimise these factors have been implemented as well as the corrections to be performed have been established. As the starting point for the sensor dynamic characterization, a model for a forced damped harmonic oscillator has been used, a method for the characterizing parameters determination has been established and its validity has been studied. A comparison between results for static and dynamic conditions has been performed as well.
Resumo:
The origin of the modified optical properties of InAs/GaAs quantum dots (QD) capped with a thin GaAs1−xSbx layer is analyzed in terms of the band structure. To do so, the size, shape, and composition of the QDs and capping layer are determined through cross-sectional scanning tunnelling microscopy and used as input parameters in an 8 × 8 k·p model. As the Sb content is increased, there are two competing effects determining carrier confinement and the oscillator strength: the increased QD height and reduced strain on one side and the reduced QD-capping layer valence band offset on the other. Nevertheless, the observed evolution of the photoluminescence (PL) intensity with Sb cannot be explained in terms of the oscillator strength between ground states, which decreases dramatically for Sb > 16%, where the band alignment becomes type II with the hole wavefunction localized outside the QD in the capping layer. Contrary to this behaviour, the PL intensity in the type II QDs is similar (at 15 K) or even larger (at room temperature) than in the type I Sb-free reference QDs. This indicates that the PL efficiency is dominated by carrier dynamics, which is altered by the presence of the GaAsSb capping layer. In particular, the presence of Sb leads to an enhanced PL thermal stability. From the comparison between the activation energies for thermal quenching of the PL and the modelled band structure, the main carrier escape mechanisms are suggested. In standard GaAs-capped QDs, escape of both electrons and holes to the GaAs barrier is the main PL quenching mechanism. For small-moderate Sb (<16%) for which the type I band alignment is kept, electrons escape to the GaAs barrier and holes escape to the GaAsSb capping layer, where redistribution and retraping processes can take place. For Sb contents above 16% (type-II region), holes remain in the GaAsSb layer and the escape of electrons from the QD to the GaAs barrier is most likely the dominant PL quenching mechanism. This means that electrons and holes behave dynamically as uncorrelated pairs in both the type-I and type-II structures.
Resumo:
In this paper, the classic oscillator design methods are reviewed, and their strengths and weaknesses are shown. Provisos for avoiding the misuse of classic methods are also proposed. If the required provisos are satisfied, the solutions provided by the classic methods (oscillator start-up linear approximation) will be correct. The provisos verification needs to use the NDF (Network Determinant Function). The use of the NDF or the most suitable RRT (Return Relation Transponse), which is directly related to the NDF, as a tool to analyze oscillators leads to a new oscillator design method. The RRT is the "true" loop-gain of oscillators. The use of the new method is demonstrated with examples. Finally, a comparison of NDF/RRT results with the HB (Harmonic Balance) simulation and practical implementation measurements prove the universal use of the new methods.