2 resultados para Quadrics.
em Universidad Politécnica de Madrid
Resumo:
The conchoid of a surface F with respect to given xed point O is roughly speaking the surface obtained by increasing the radius function with respect to O by a constant. This paper studies conchoid surfaces of spheres and shows that these surfaces admit rational parameterizations. Explicit parameterizations of these surfaces are constructed using the relations to pencils of quadrics in R3 and R4. Moreover we point to remarkable geometric properties of these surfaces and their construction.
Resumo:
We discuss three geometric constructions and their relations, namely the offset, the conchoid and the pedal construction. The offset surface F d of a given surface F is the set of points at fixed normal distance d of F. The conchoid surface G d of a given surface G is obtained by increasing the radius function by d with respect to a given reference point O. There is a nice relation between offsets and conchoids: The pedal surfaces of a family of offset surfaces are a family of conchoid surfaces. Since this relation is birational, a family of rational offset surfaces corresponds to a family of rational conchoid surfaces and vice versa. We present theoretical principles of this mapping and apply it to ruled surfaces and quadrics. Since these surfaces have rational offsets and conchoids, their pedal and inverse pedal surfaces are new classes of rational conchoid surfaces and rational offset surfaces.