7 resultados para Quadrature rules
em Universidad Politécnica de Madrid
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
This paper introduces and studies the notion of CLP projection for Constraint Handling Rules (CHR). The CLP projection consists of a naive translation of CHR programs into Constraint Logic Programs (CLP). We show that the CLP projection provides a safe operational and declarative approximation for CHR programs. We demónstrate moreover that a confluent CHR program has a least model, which is precisely equal to the least model of its CLP projection (closing henee a ten year-old conjecture by Abdenader et al.). Finally, we illustrate how the notion of CLP projection can be used in practice to apply CLP analyzers to CHR. In particular, we show results from applying AProVE to prove termination, and CiaoPP to infer both complexity upper bounds and types for CHR programs.
Resumo:
It is well known that the evaluation of the influence matrices in the boundary-element method requires the computation of singular integrals. Quadrature formulae exist which are especially tailored to the specific nature of the singularity, i.e. log(*- x0)9 Ijx- JC0), etc. Clearly the nodes and weights of these formulae vary with the location Xo of the singular point. A drawback of this approach is that a given problem usually includes different types of singularities, and therefore a general-purpose code would have to include many alternative formulae to cater for all possible cases. Recently, several authors1"3 have suggested a type independent alternative technique based on the combination of standard Gaussian rules with non-linear co-ordinate transformations. The transformation approach is particularly appealing in connection with the p.adaptive version, where the location of the collocation points varies at each step of the refinement process. The purpose of this paper is to analyse the technique in eference 3. We show that this technique is asymptotically correct as the number of Gauss points increases. However, the method possesses a 'hidden' source of error that is analysed and can easily be removed.
Resumo:
In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.
Resumo:
Over the past 20 years,theuse of Computer Algebra Systems(CAS) has helped with the teaching of mathematics inengineer-ingschools. However the traditional use of CAS only in math labs has led to a narrow view by the student: the CAS is an additional work, not included in the learning process. The didactic guidelines of the European Higher Education Area(EHEA) propose a new teaching–learning model based on competencies. We suggest the use of the CAS be adapted to the new rules. In this paper,we present a model for the integrated use of the CAS,and we describe and analyze two experiments carried out in the academic year2011–2012. Our analysis suggests that the use of CAS in all learning and assessment activities has the potential to positively influence the development of competencies.
Resumo:
Se ha presentado la evaluación y optimización de las reglas de operación de un embalse para gestión de avenidas usando un entorno integrado hidrológico- hidráulico de tipo Monte Carlo. Some reservoirs play a major role in flood protection, managing the floods and reducing or delaying the peak discharges in the river downstream. However, the changing environment (natural and anthropological changes) requires the development of more elaborated strategies for reservoir operation. Three factors are relevant: 1) the natural variability of inflow hydrographs, 2) the competition for reservoir storage capacity between flood control and other uses, and 3) the existence of built-up areas on downstream river reaches. A framework for evaluation/optimization of reservoir operation rules for flood management in a changing environment is presented in this study. The study was carried out using an integrated hydrologic – hydraulic model in a Monte Carlo framework.
Resumo:
Inspections are used to prevent tax evasion or any other unlawful behavior. ? The effect of inspections depends on the network topology and the contagion rule. ? The network is modeled as a Watts?Strogatz Small World that is tuned from regular to random. ? Two contagion rules are applied: continuous and discontinuous. ? The equilibrium populations of payers and evaders are obtained in terms of these system parameters.