2 resultados para QUINONE POOL
em Universidad Politécnica de Madrid
Resumo:
Aims Dehesas are agroforestry systems characterized by scattered trees among pastures, crops and/or fallows. A study at a Spanish dehesa has been carried out to estimate the spatial distribution of the soil organic carbon stock and to assess the influence of the tree cover. Methods The soil organic carbon stock was estimated from the five uppermost cm of themineral soil with high spatial resolution at two plots with different grazing intensities. The Universal Kriging technique was used to assess the spatial distribution of the soil organic carbon stocks, using tree coverage within a buffering area as an auxiliary variable. Results A significant positive correlation between tree presence and soil organic carbon stocks up to distances of around 8 m from the trees was found. The tree crown cover within a buffer up to a distance similar to the crown radius around the point absorbed 30 % of the variance in the model for both grazing intensities, but residual variance showed stronger spatial autocorrelation under regular grazing conditions. Conclusions Tree cover increases soil organic carbon stocks, and can be satisfactorily estimated by means of crown parameters. However, other factors are involved in the spatial pattern of the soil organic carbon distribution. Livestock plays an interactive role together with tree presence in soil organic carbon distribution.
Resumo:
Shrubs play an important role in water-limited agro-silvo-pastoral systems by providing shelter and forage for livestock, for erosion control, to maintain biodiversity, diversifying the landscape, and above all, facilitating the regeneration of trees. Furthermore, the carbon sink capacity of shrubs could also help to mitigate the effects of climate change since they constitute a high proportion of total plant biomass. The contribution of two common extensive native shrub species (Cistus ladanifer L. and Retama sphaerocarpa (L.) Boiss.) to the carbon pool of Iberian dehesas (Mediterranean agro-silvo-pastoral systems) is analyzed through biomass models developed at both individual (biovolume depending) and community level (height and cover depending). The total amount of carbon stored in these shrubs, including above- and belowground biomass, ranges from 1.8 to 11.2 Mg C ha_1 (mean 6.8 Mg C ha_1) for communities of C. ladanifer and from 2.6 to 8.6 Mg C ha_1 (mean 4.5 Mg C ha_1) for R. sphaerocarpa. These quantities account for over 20e30% of the total plant biomass in the system. The potential for carbon sequestration of these shrubs in the studied system ranges 0.10e1.32 Mg C ha_1 year_1 and 0.25e1.25 Mg C ha_1 year_1 for the C. ladanifer and R. sphaerocarpa communities’ respectively