10 resultados para Pt-based nanoparticles

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optical hyperthermia systems based on the laser irradiation of gold nanorods seem to be a promising tool in the development of therapies against cancer. After a proof of concept in which the authors demonstrated the efficiency of this kind of systems, a modeling process based on an equivalent thermal-electric circuit has been carried out to determine the thermal parameters of the system and an energy balance obtained from the time-dependent heating and cooling temperature curves of the irradiated samples in order to obtain the photothermal transduction efficiency. By knowing this parameter, it is possible to increase the effectiveness of the treatments, thanks to the possibility of predicting the response of the device depending on the working configuration. As an example, the thermal behavior of two different kinds of nanoparticles is compared. The results show that, under identical conditions, the use of PEGylated gold nanorods allows for a more efficient heating compared with bare nanorods, and therefore, it results in a more effective therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of singlewalled carbon nanotubes (SWCNT) and inorganic fullerenelike tungsten disulfide nanoparticles (IFWS2) on the morphology and thermal, mechanical and electrical performance of multifunctional fibrereinforced polymer composites has been investigated. Significant improvements were observed in stiffness, strength and toughness in poly (ether ether ketone) (PEEK) / (SWCNT) / glass fibre (GF) laminates when a compatibilizer was used for wrapping the CNTs. Hybrid poly(phenylene sulphide) (PPS)/IFWS2/ carbon fibre (CF) reinforced polymer composites showed improved mechanical and tribological properties attributed to a synergetic effect between the IF nanoparticles and CF.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using inorganic fullerene-like (IF) nanoparticles and inorganic nanotubes (INT) in organic-inorganic hybrid composite, materials provide the potential for improving thermal, mechanical, and tribological properties of conventional composites. The processing of such high-performance hybrid thermoplastic polymer nanocomposites is achieved via melt-blending without the aid of any modifier or compatibilizing agent. The incorporation of small quantities (0.1-4 wt.%) of IF/INTs (tungsten disulfide, IF-WS2 or molybdenum disulfide, MoS2) generates notable performance enhancements through reinforcement effects and excellent lubricating ability in comparison with promising carbon nanotubes or other inorganic nanoscale fillers. It was shown that these IF/INT nanocomposites can provide an effective balance between performance, cost effectiveness, and processability, which is of significant importance for extending the practical applications of diverse hierarchical thermoplastic-based composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traction prediction modelling, a key factor in farm tractor design, has been driven by the need to find the answer to this question without having to build physical prototypes. A wide range of theories and their respective algorithms can be used in such predictions. The “Tractors and Tillage” research team at the Polytechnic University of Madrid, which engages, among others, in traction prediction for farm tractors, has developed a series of programs based on the cone index as the parameter representative of the terrain. With the software introduced in the present paper, written in Visual Basic, slip can be predicted in two- and four-wheel drive tractors using any one of four models. It includes databases for tractors, front tyres, rear tyres and working conditions (soil cone index and drawbar pull exerted). The results can be exported in spreadsheet format.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rheological and tribological properties of single-walled carbon nanotube (SWCNT)-reinforced poly(phenylene sulphide) (PPS) and poly(ether ether ketone) (PEEK) nanocomposites prepared via melt-extrusion were investigated. The effectiveness of employing a dual-nanofiller strategy combining polyetherimide (PEI)-wrapped SWCNTs with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles for property enhancement of the resulting hybrid composites was evaluated. Viscoelastic measurements revealed that the complex viscosity ?, storage modulus G?, and loss modulus G? increased with SWCNT content. In the low-frequency region, G? and G? became almost independent of frequency at higher SWCNT loadings, suggesting a transition from liquid-like to solid-like behavior. The incorporation of increasing IF-WS2 contents led to a progressive drop in ? and G? due to a lubricant effect. PEEK nanocomposites showed lower percolation threshold than those based on PPS, ascribed to an improved SWCNT dispersion due to the higher affinity between PEI and PEEK. The SWCNTs significantly lowered the wear rate but only slightly reduced the coefficient of friction. Composites with both nanofillers exhibited improved wear behavior, attributed to the outstanding tribological properties of these nanoparticles and a synergistic reinforcement effect. The combination of SWCNTs with IF-WS2 is a promising route for improving the tribological and rheological performance of thermoplastic nanocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays one of the challenges of materials science is to find new technologies that will be able to make the most of renewable energies. An example of new proposals in this field are the intermediate-band (IB) materials, which promise higher efficiencies in photovoltaic applications (through the intermediate band solar cells), or in heterogeneous photocatalysis (using nanoparticles of them, for the light-induced degradation of pollutants or for the efficient photoevolution of hydrogen from water). An IB material consists in a semiconductor in which gap a new level is introduced [1], the intermediate band (IB), which should be partially filled by electrons and completely separated of the valence band (VB) and of the conduction band (CB). This scheme (figure 1) allows an electron from the VB to be promoted to the IB, and from the latter to the CB, upon absorption of photons with energy below the band gap Eg, so that energy can be absorbed in a wider range of the solar spectrum and a higher current can be obtained without sacrificing the photovoltage (or the chemical driving force) corresponding to the full bandgap Eg, thus increasing the overall efficiency. This concept, applied to photocatalysis, would allow using photons of a wider visible range while keeping the same redox capacity. It is important to note that this concept differs from the classic photocatalyst doping principle, which essentially tries just to decrease the bandgap. This new type of materials would keep the full bandgap potential but would use also lower energy photons. In our group several IB materials have been proposed, mainly for the photovoltaic application, based on extensively doping known semiconductors with transition metals [2], examining with DFT calculations their electronic structures. Here we refer to In2S3 and SnS2, which contain octahedral cations; when doped with Ti or V an IB is formed according to quantum calculations (see e.g. figure 2). We have used a solvotermal synthesis method to prepare in nanocrystalline form the In2S3 thiospinel and the layered compound SnS2 (which when undoped have bandgaps of 2.0 and 2.2 eV respectively) where the cation is substituted by vanadium at a ?10% level. This substitution has been studied, characterizing the materials by different physical and chemical techniques (TXRF, XRD, HR-TEM/EDS) (see e.g. figure 3) and verifying with UV spectrometry that this substitution introduces in the spectrum the sub-bandgap features predicted by the calculations (figure 4). For both sulphide type nanoparticles (doped and undoped) the photocatalytic activity was studied by following at room temperature the oxidation of formic acid in aqueous suspension, a simple reaction which is easily monitored by UV-Vis spectroscopy. The spectral response of the process is measured using a collection of band pass filters that allow only some wavelengths into the reaction system. Thanks to this method the spectral range in which the materials are active in the photodecomposition (which coincides with the band gap for the undoped samples) can be checked, proving that for the vanadium substituted samples this range is increased, making possible to cover all the visible light range. Furthermore it is checked that these new materials are more photocorrosion resistant than the toxic CdS witch is a well know compound frequently used in tests of visible light photocatalysis. These materials are thus promising not only for degradation of pollutants (or for photovoltaic cells) but also for efficient photoevolution of hydrogen from water; work in this direction is now being pursued.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer/inorganic nanoparticle nanocomposites have garnered considerable academic and industrial interest over recent decades in the development of advanced materials for a wide range of applications. In this respect, the dispersion of so-called inorganic fullerene-like (IF) nanoparticles, e.g., tungsten disulfide (IF-WS2) or molybdenum disulfide (IF-MoS2), into polymeric matrices is emerging as a new strategy. The surprising properties of these layered metal dichalcogenides such as high impact resistance and superior tribological behavior, attributed to their nanoscale size and hollow quasi-spherical shape, open up a wide variety of opportunities for applications of these inorganic compounds. The present work presents a detailed overview on research in the area of IF-based polymer nanocomposites, with special emphasis on the use of IF-WS2 nanoparticles as environmentally friendly reinforcing fillers. The incorporation of IF particles has been shown to be efficient for improving thermal, mechanical and tribological properties of various thermoplastic polymers, such as polypropylene, nylon-6, poly(phenylene sulfide), poly(ether ether ketone), where nanocomposites were fabricated by simple melt-processing routes without the need for modifiers or surfactants. This new family of nanocomposites exhibits similar or enhanced performance when compared with nanocomposites that incorporate carbon nanotubes, carbon nanofibers or nanoclays, but are substantially more cost-effective, efficient and environmentally satisfactory. Most recently, innovative approaches have been described that exploit synergistic effects to produce new materials with enhanced properties, including the combined use of micro- and nanoparticles such as IF-WS2/nucleating agent or IF-WS2/carbon fiber, as well as dual nanoparticle systems such as SWCNT/IF-WS2 where each nanoparticle has different characteristics. The structure–property relationships of these nanocomposites are discussed and potential applications proposed ranging from medicine to the aerospace, automotive and electronics industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TiO2 nanoparticles with tailored morphology have been synthesized under exceptionally soft conditions. The strategy is based on the use of a non-aqueous alcoholic reaction medium in which water traces, coming either from the air (atmospheric water) or from an ethanol–water azeotropic mixture (ethanol 96%), are incorporated in order to accelerate hydrolysis of the Ti–precursor. Moreover, organic surfactants have been used as capping agents so as to tailor crystal growth in certain preferential directions. Combinations of oleic acid and oleylamine, which lead to the formation of another surfactant, dioleamide, are employed instead of fluorine-based compounds, thus increasing the sustainability of the process. As a result, TiO2 nanostructured hierarchical microspheres and individual nanoparticles with exposed high-energy facets can be obtained at atmospheric pressure and temperatures as low as 78 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on an experimental study on the spin-waves relaxation rate in two series of nanodisks of diameter ϕ=300 , 500, and 700 nm, patterned out of two systems: a 20 nm thick yttrium iron garnet (YIG) film grown by pulsed laser deposition either bare or covered by 13 nm of Pt. Using a magnetic resonance force microscope, we measure precisely the ferromagnetic resonance linewidth of each individual YIG and YIG|Pt nanodisks. We find that the linewidth in the nanostructure is sensibly smaller than the one measured in the extended film. Analysis of the frequency dependence of the spectral linewidth indicates that the improvement is principally due to the suppression of the inhomogeneous part of the broadening due to geometrical confinement, suggesting that only the homogeneous broadening contributes to the linewidth of the nanostructure. For the bare YIG nano-disks, the broadening is associated to a damping constant α=4 × 10−4 . A threefold increase of the linewidth is observed for the series with Pt cap layer, attributed to the spin pumping effect. The measured enhancement allows to extract the spin mixing conductance found to be G↑↓=1.55 × 1014 Ω−1 m−2 for our YIG(20nm)|Pt interface, thus opening large opportunities for the design of YIG based nanostructures with optimized magnetic losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural state and static and dynamic magnetic properties of TbCu2 nanoparticles are reported produced by mechanical milling under inert atmosphere. The core magnetic structure retains the bulk antiferromagnetic arrangement. The overall interpretation is based on a superantiferromagnetic behavior which at low temperatures coexists with a canting of surface moments and mismatch of antiferromagnetic sublattices of the nanoparticles.