3 resultados para Pruebas (Proceso penal)

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

En el campo de la Ingeniería de Protocolos es fundamental el papel que han tomado los organismos normalizadores de Servicios y Sistemas de Comunicaciones, como ISO e ITU. En este entorno, las Técnicas de Descripción Formal son un mecanismo clave para el diseño y especificación de dichos protocolos.Esta actividad ha surgido, en gran parte, debida a las necesidades de interconectividad, que está alcanzando niveles difícilmente imaginables hace pocos añoos: se pretende que sistemas heterogéneos y completamente diferentes cooperen y trabajen de forma distribuida o, simplemente, que intercambien volúmenes de información cada vez mayores. Surgen normas y recomendaciones a partir de iniciativas públicas orientadas a proporcionar normas en los servicios y protocolos de comunicaciones; normas que los fabricantes deben cumplir y organismos independientes deben certificar u homologar. Existen dos campos de actuación bien diferentes: por un lado, las normas deben ser precisas y no contener ambigüedades . Por otro, es necesario comprobar que el producto se atiene a la norma. Este proceso se realiza en base a unas pruebas denominadas de Conformidad. l primer campo es el causante directo del desarrollo de las FDTs. El segundo, ha provocado que ISO normalice un entorno específico y una metodología para el desarrollo y ejecución de Pruebas de Conformidad: la norma ISO-9646. En este entorno tiene lugar el desarrollo de la presente tesis. Como objetivos fundamentales se ha trabajado en 1) conceptualización y subsiguiente formalización del proceso de ejecución de Pruebas de Conformidad y elementos integrantes en las arquitecturas de pruebas, y 2) definición de una métrica de cobertura que aproveche la existencia de especificaciones formales como elemento de referencia para la generación de las pruebas de conformidad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las imágenes hiperespectrales permiten extraer información con una gran resolución espectral, que se suele extender desde el espectro ultravioleta hasta el infrarrojo. Aunque esta tecnología fue aplicada inicialmente a la observación de la superficie terrestre, esta característica ha hecho que, en los últimos años, la aplicación de estas imágenes se haya expandido a otros campos, como la medicina y, en concreto, la detección del cáncer. Sin embargo, este nuevo ámbito de aplicación ha generado nuevas necesidades, como la del procesado de las imágenes en tiempo real. Debido, precisamente, a la gran resolución espectral, estas imágenes requieren una elevada capacidad computacional para ser procesadas, lo que imposibilita la consecución de este objetivo con las técnicas tradicionales de procesado. En este sentido, una de las principales líneas de investigación persigue el objetivo del tiempo real mediante la paralelización del procesamiento, dividiendo esta carga computacional en varios núcleos que trabajen simultáneamente. A este respecto, en el presente documento se describe el desarrollo de una librería de procesado hiperespectral para el lenguaje RVC - CAL, que está específicamente pensado para el desarrollo de aplicaciones multimedia y proporciona las herramientas necesarias para paralelizar las aplicaciones. En concreto, en este Proyecto Fin de Grado se han desarrollado las funciones necesarias para implementar dos de las cuatro fases de la cadena de análisis de una imagen hiperespectral - en concreto, las fases de estimación del número de endmembers y de la estimación de la distribución de los mismos en la imagen -; conviene destacar que este trabajo se complementa con el realizado por Daniel Madroñal en su Proyecto Fin de Grado, donde desarrolla las funciones necesarias para completar las otras dos fases de la cadena. El presente documento sigue la estructura clásica de un trabajo de investigación, exponiendo, en primer lugar, las motivaciones que han cimentado este Proyecto Fin de Grado y los objetivos que se esperan alcanzar con él. A continuación, se realiza un amplio análisis del estado del arte de las tecnologías necesarias para su desarrollo, explicando, por un lado, las imágenes hiperespectrales y, por otro, todos los recursos hardware y software necesarios para la implementación de la librería. De esta forma, se proporcionarán todos los conceptos técnicos necesarios para el correcto seguimiento de este documento. Tras ello, se detallará la metodología seguida para la generación de la mencionada librería, así como el proceso de implementación de una cadena completa de procesado de imágenes hiperespectrales que permita la evaluación tanto de la bondad de la librería como del tiempo necesario para analizar una imagen hiperespectral completa. Una vez expuesta la metodología utilizada, se analizarán en detalle los resultados obtenidos en las pruebas realizadas; en primer lugar, se explicarán los resultados individuales extraídos del análisis de las dos etapas implementadas y, posteriormente, se discutirán los arrojados por el análisis de la ejecución de la cadena completa, tanto en uno como en varios núcleos. Por último, como resultado de este estudio se extraen una serie de conclusiones, que engloban aspectos como bondad de resultados, tiempos de ejecución y consumo de recursos; asimismo, se proponen una serie de líneas futuras de actuación con las que se podría continuar y complementar la investigación desarrollada en este documento. ABSTRACT. Hyperspectral imaging collects information from across the electromagnetic spectrum, covering a wide range of wavelengths. Although this technology was initially developed for remote sensing and earth observation, its multiple advantages - such as high spectral resolution - led to its application in other fields, as cancer detection. However, this new field has shown specific requirements; for example, it needs to accomplish strong time specifications, since all the potential applications - like surgical guidance or in vivo tumor detection - imply real-time requisites. Achieving this time requirements is a great challenge, as hyperspectral images generate extremely high volumes of data to process. For that reason, some new research lines are studying new processing techniques, and the most relevant ones are related to system parallelization: in order to reduce the computational load, this solution executes image analysis in several processors simultaneously; in that way, this computational load is divided among the different cores, and real-time specifications can be accomplished. This document describes the construction of a new hyperspectral processing library for RVC - CAL language, which is specifically designed for multimedia applications and allows multithreading compilation and system parallelization. This Diploma Project develops the required library functions to implement two of the four stages of the hyperspectral imaging processing chain - endmember and abundance estimations -. The two other stages - dimensionality reduction and endmember extraction - are studied in the Diploma Project of Daniel Madroñal, which complements the research work described in this document. The document follows the classical structure of a research work. Firstly, it introduces the motivations that have inspired this Diploma Project and the main objectives to achieve. After that, it thoroughly studies the state of the art of the technologies related to the development of the library. The state of the art contains all the concepts needed to understand the contents of this research work, like the definition and applications of hyperspectral imaging and the typical processing chain. Thirdly, it explains the methodology of the library implementation, as well as the construction of a complete processing chain in RVC - CAL applying the mentioned library. This chain will test both the correct behavior of the library and the time requirements for the complete analysis of one hyperspectral image, either executing the chain in one processor or in several ones. Afterwards, the collected results will be carefully analyzed: first of all, individual results -from endmember and abundance estimations stages - will be discussed and, after that, complete results will be studied; this results will be obtained from the complete processing chain, so they will analyze the effects of multithreading and system parallelization on the mentioned processing chain. Finally, as a result of this discussion, some conclusions will be gathered regarding some relevant aspects, such as algorithm behavior, execution times and processing performance. Likewise, this document will conclude with the proposal of some future research lines that could continue the research work described in this document.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El trabajo se enmarca dentro de los proyecto INTEGRATE y EURECA, cuyo objetivo es el desarrollo de una capa de interoperabilidad semántica que permita la integración de datos e investigación clínica, proporcionando una plataforma común que pueda ser integrada en diferentes instituciones clínicas y que facilite el intercambio de información entre las mismas. De esta manera se promueve la mejora de la práctica clínica a través de la cooperación entre instituciones de investigación con objetivos comunes. En los proyectos se hace uso de estándares y vocabularios clínicos ya existentes, como pueden ser HL7 o SNOMED, adaptándolos a las necesidades particulares de los datos con los que se trabaja en INTEGRATE y EURECA. Los datos clínicos se representan de manera que cada concepto utilizado sea único, evitando ambigüedades y apoyando la idea de plataforma común. El alumno ha formado parte de un equipo de trabajo perteneciente al Grupo de Informática de la UPM, que a su vez trabaja como uno de los socios de los proyectos europeos nombrados anteriormente. La herramienta desarrollada, tiene como objetivo realizar tareas de homogenización de la información almacenada en las bases de datos de los proyectos haciendo uso de los mecanismos de normalización proporcionados por el vocabulario médico SNOMED-CT. Las bases de datos normalizadas serán las utilizadas para llevar a cabo consultas por medio de servicios proporcionados en la capa de interoperabilidad, ya que contendrán información más precisa y completa que las bases de datos sin normalizar. El trabajo ha sido realizado entre el día 12 de Septiembre del año 2014, donde comienza la etapa de formación y recopilación de información, y el día 5 de Enero del año 2015, en el cuál se termina la redacción de la memoria. El ciclo de vida utilizado ha sido el de desarrollo en cascada, en el que las tareas no comienzan hasta que la etapa inmediatamente anterior haya sido finalizada y validada. Sin embargo, no todas las tareas han seguido este modelo, ya que la realización de la memoria del trabajo se ha llevado a cabo de manera paralela con el resto de tareas. El número total de horas dedicadas al Trabajo de Fin de Grado es 324. Las tareas realizadas y el tiempo de dedicación de cada una de ellas se detallan a continuación:  Formación. Etapa de recopilación de información necesaria para implementar la herramienta y estudio de la misma [30 horas.  Especificación de requisitos. Se documentan los diferentes requisitos que ha de cumplir la herramienta [20 horas].  Diseño. En esta etapa se toman las decisiones de diseño de la herramienta [35 horas].  Implementación. Desarrollo del código de la herramienta [80 horas].  Pruebas. Etapa de validación de la herramienta, tanto de manera independiente como integrada en los proyectos INTEGRATE y EURECA [70 horas].  Depuración. Corrección de errores e introducción de mejoras de la herramienta [45 horas].  Realización de la memoria. Redacción de la memoria final del trabajo [44 horas].---ABSTRACT---This project belongs to the semantic interoperability layer developed in the European projects INTEGRATE and EURECA, which aims to provide a platform to promote interchange of medical information from clinical trials to clinical institutions. Thus, research institutions may cooperate to enhance clinical practice. Different health standards and clinical terminologies has been used in both INTEGRATE and EURECA projects, e.g. HL7 or SNOMED-CT. These tools have been adapted to the projects data requirements. Clinical data are represented by unique concepts, avoiding ambiguity problems. The student has been working in the Biomedical Informatics Group from UPM, partner of the INTEGRATE and EURECA projects. The tool developed aims to perform homogenization tasks over information stored in databases of the project, through normalized representation provided by the SNOMED-CT terminology. The data query is executed against the normalized version of the databases, since the information retrieved will be more informative than non-normalized databases. The project has been performed from September 12th of 2014, when initiation stage began, to January 5th of 2015, when the final report was finished. The waterfall model for software development was followed during the working process. Therefore, a phase may not start before the previous one finishes and has been validated, except from the final report redaction, which has been carried out in parallel with the others phases. The tasks that have been developed and time for each one are detailed as follows:  Training. Gathering the necessary information to develop the tool [30 hours].  Software requirement specification. Requirements the tool must accomplish [20 hours].  Design. Decisions on the design of the tool [35 hours].  Implementation. Tool development [80 hours].  Testing. Tool evaluation within the framework of the INTEGRATE and EURECA projects [70 hours].  Debugging. Improve efficiency and correct errors [45 hours].  Documenting. Final report elaboration [44 hours].