25 resultados para Propulsión
em Universidad Politécnica de Madrid
Simulación de maniobras de buques con sistemas de propulsión no convencional en aguas poco profundas
Resumo:
Los requisitos cada vez más exigentes en cuanto a misiones, limitaciones operacionales y ambientales así como nuevas tecnologías, imponen permanentemente retos a los arquitectos navales para generar alternativas de buques y valorar su bondad en las primeras etapas del proyecto. Este es el caso de los Buques Patrulleros de Apoyo Fluvial Pesados PAF-P, que por requerimiento de la Armada Nacional de Colombia ha diseñado y construido COTECMAR. Los PAF-P, son buques fluviales cuya relación Manga-Calado excede la mayoría de los buques existentes (B/T=9,5), debido principalmente a las restricciones en el calado a consecuencia de la escasa profundidad de los ríos. Estos buques están equipados con sistemas de propulsión acimutales tipo “Pum-Jet”. Las particularidades del buque y del ambiente operacional, caracterizado por ríos tropicales con una variabilidad de profundidad dependiente del régimen de lluvias y sequía, así como la falta de canalización y la corriente, hacen que la maniobrabilidad y controlabilidad sean fundamentales para el cumplimiento de su misión; adicionalmente, no existen modelos matemáticos validados que permitan predecir en las primeras etapas del diseño la maniobrabilidad de este tipo de buques con los efectos asociados por profundidad. La presente tesis doctoral aborda el desarrollo de un modelo matemático para simulación de maniobrabilidad en aguas poco profundas de buques con relación manga-calado alta y con propulsores acimutales tipo “Pump-Jet”, cuyo chorro además de entregar el empuje necesario para el avance del buque, genera la fuerza de gobierno en función del ángulo de orientación del mismo, eliminando la necesidad de timones. El modelo matemático ha sido validado mediante los resultados obtenidos en las pruebas de maniobrabilidad a escala real del PAF-P, a través de la comparación de trayectorias, series temporales de las variables de estado más significativas y parámetros del círculo evolutivo como son diámetro de giro, diámetro táctico, avance y transferencia. El plan de pruebas se basó en técnicas de Diseño de Experimentos “DOE” para racionalizar el número de corridas en diferentes condiciones de profundidad, velocidad y orientación del chorro (ángulo de timón). En el marco de la presente investigación y para minimizar los errores por efectos ambientales y por inexactitud en los instrumentos de medición, se desarrolló un sistema de adquisición y procesamiento de datos de acuerdo con los lineamientos de ITTC. La literatura existente describe los efectos negativos de la profundidad en los parámetros de maniobrabilidad de buques convencionales (Efecto tipo S), principalmente las trayectorias descritas en los círculos evolutivos aumentan en la medida que disminuye la profundidad; no obstante, en buques de alta relación manga-calado, B/T=7,51 (Yoshimura, y otros, 1.988) y B/T=6,38 (Yasukawa, y otros, 1.995) ha sido reportado el efecto contrario (Efecto tipo NS Non Standart). Este último efecto sin embargo, ha sido observado mediante experimentación con modelos a escala pero no ha sido validado en pruebas de buques a escala real. El efecto tipo NS en buques dotados con hélice y timones, se atribuye al mayor incremento de la fuerza del timón comparativamente con las fuerzas del casco en la medida que disminuye la profundidad; en el caso de estudio, el fenómeno está asociado a la mejor eficiencia de la bomba de agua “Pump-Jet”, debido a la resistencia añadida en el casco por efecto de la disminución de la profundidad. Los resultados de las pruebas con buque a escala real validan el excelente desempeño de esta clase de buques, cumpliendo en exceso los criterios de maniobrabilidad existentes y muestran que el diámetro de giro y otras características de maniobrabilidad mejoran con la disminución de la profundidad en buques con alta relación manga-calado. ABSTRACT The increasingly demanding requirements in terms of missions, operational and environmental constraints as well as new technologies, constantly impose challenges to naval architects to generate alternatives and asses their performance in the early stages of design. That is the case of Riverine Support Patrol Vessel (RSPV), designed and built by COTECMAR for the Colombian Navy. RSPV are riverine ships with a Beam-Draft ratio exceeding most of existing ships (B/T=9,5), mainly due to the restrictions in draft as a result of shallow water environment. The ships are equipped with azimuthal propulsion system of the “Pump-Jet” type. The peculiarities of the ship and the operational environment, characterized by tropical rivers of variable depth depending on the rain and dry seasons, as well as the lack channels and the effect of water current, make manoeuvrability and controllability fundamental to fulfill its mission; on the other hand, there are not validated mathematical models available to predict the manoeuvrability of such ships with the associated water depth effects in the early stages of design. This dissertation addresses the development of a mathematical model for shallow waters’ manoeuvrability simulation of ships with high Beam-Draft ratio and azimuthal propulsion systems type “Pump-Jet”, whose stream generates the thrust required by the ship to advance and also the steering force depending on the orientation angle, eliminating the need of rudders. The mathematical model has been validated with the results of RSPV’s full scale manoeuvring tests, through a comparison of paths, time series of state variables and other parameters taken from turning tests, such as turning diameter, tactical diameter, advance and transfer. The test plan was developed applying techniques of Design of Experiments “DOE”, in order to rationalize the number of runs in different conditions of water depth, ship speed and jet stream orientation (rudder angle). A data acquisition and processing system was developed, following the guidelines of ITTC, as part of this research effort, in order to minimize errors by environmental effects and inaccuracy in measurement instruments, The negative effects of depth on manoeuvrability parameters for conventional ships (Effect Type S: the path described by the ship during turning test increase with decrease of water depth), has been documented in the open literature; however for wide-beam ships, B/T=7,51 (Yoshimura, y otros, 1.988) and B/T=6,38 (Yasukawa, y otros, 1.995) has been reported the opposite effect (Type NS). The latter effect has been observed thru model testing but until now had not been validated with full-scale results. In ships with propellers and rudders, type NS effect is due to the fact that increment of rudder force becomes larger than hull force with decrease of water depth; in the study case, the phenomenon is associated with better efficiency of the Pump-Jet once the vessel speed becomes lower, due to hull added resistance by the effect of the decrease of water depth. The results of full scale tests validates the excellent performance of this class of ships, fulfilling the manoeuvrability criteria in excess and showing that turning diameter and other parameters in high beam-draft ratio vessels do improve with the decrease of depth.
Resumo:
La demanda social actual por combustibles más respetuosos con el medio ambiente ha impuesto unas estrictas normas de emisiones de gases infecto invernadero que afectan a todos los medios de transporte, incluido el marítimo. Se han establecido unas zonas libres de emisiones (ECA) en aguas de todo el mundo. Esto ha impulsado al Gas Natural Licuado (GNL) como el combustible del futuro para buques para cumplir con las emisiones fijadas por la Convención Internacional de Prevención de la Contaminación de Barcos (MARPOL). El presente trabajo propone la instalación de una gasinera para buques en la futura planta de regasificación de Granadilla (Santa Cruz de Tenerife). El trabajo ha comprendido el diseño y dimensionamiento de las tuberías de la terminal de recepción de la planta de regasificación, así como las tuberías para la gasinera.
Resumo:
Current social demand for more environmentally-friendly fuels environment has imposed stringent emissions standards infectious greenhouse affecting all means of transport, including maritime. A few free zones emissions (ECA) in waters around the world have been established. This has driven to the Liquefied Natural Gas (LNG) as the fuel of the future for ships to comply with emissions laid down by the Convention International Prevention of the Pollution from Ships (MARPOL). The present work proposes the installation of a LNG station for ships in the future regasification plant of Granadilla (Santa Cruz de Tenerife). The work has understood the design and sizing of the receiving of the regasification plant terminal pipelines, as well as pipes for the LNG station. La demanda social actual por combustibles más respetuosos con el medio ambiente ha impuesto unas estrictas normas de emisiones de gases infecto invernadero que afectan a todos los medios de transporte, incluido el marítimo. Se han establecido unas zonas libres de emisiones (ECA) en aguas de todo el mundo. Esto ha impulsado al Gas Natural Licuado (GNL) como el combustible del futuro para buques para cumplir con las emisiones fijadas por la Convención Internacional de Prevención de la Contaminación de Barcos (MARPOL). El presente trabajo propone la instalación de una gasinera para buques en la futura planta de regasificación de Granadilla (Santa Cruz de Tenerife). El trabajo ha comprendido el diseño y dimensionamiento de las tuberías de la terminal de recepción de la planta de regasificación, así como las tuberías para la gasinera.
Resumo:
TIPO DE BUQUE: Velero de competición capacitado para la regata alrededor del mundo “Volvo Ocean Race.” REGLAMENTOS: Reglas de la clase: Volvo Ocean 60 rule 2000 + changes CLASIFICACIÓN: ABS Guide for Building and Classing Offshore Racing Yachts 1994 incorporating Notice #1 DESPLAZAMIENTO MÁXIMO: 15000 KG CALADO MÁXIMO: 3.75 m ESLORA MÁXIMA: 23.5 m CONSTRUCCIÓN: Casco: Materiales compuestos. Mástil: materiales compuestos sin núcleo o aluminio. INSTALACIÓN ELÉCTRICA: 24V DC con un motor auxiliar y al menos dos alternadores independientes. SISTEMA DE PROPULSIÓN: Vela, aparejo tipo Sloop. Motor propulsivo de emergencia con hélice plegable de dos palas capaz de dar 7 nudos en condiciones de mar en calma ALOJAMIENTO: para 12 tripulantes REQUERIMIENTOS: Desaladora-potabilizadora, radar, GPS, GMDSS, comunicaciones por satélite Inmarsat B y C, sistema de gobierno de emergencia, calefacción, bombas de lastre, sistema de corrección de escora mediante tanques de lastre liquido.
Resumo:
TIPO DE BUQUE: velero de competición IMOCA OPEN 60 CONSTRUCCIÓN: materiales compuestos ESLORA: LOA mayor de 59’ (17.938 m) y menor de 60’ (18.288) CALADO: máximo de 4.5 m CLASIFICACIÓN Y COTA: 2007 IMOCA Open60 Rule. ABS guide for building and classing offshore yachts. ISAF Offshore Special Regulations, category 0 VELOCIDAD A MOTOR: 8 nudos al 90% MCR SISTEMA DE PROPULSIÓN: motor diesel de potencia 37 CV. Hélice de 3 palas OTROS REQUERIMIENTOS: sólo competición, estudio del comportamiento en la mar en condiciones oceánicas. Insumergibilidad. Sistema de orza pivotante. Vela spinnaker asimétrica para vientos portantes
Resumo:
Se discuten algunos aspectos básicos de la combustión supersónica en lo que respecta al uso de motores de aspiración de aire para la propulsión de vehículos espaciales en la atmósfera. Se discuten,asimismo, las ventajas e inconvenientes de la utilización de llamas de difusión en la combustión supersónica. Se incluye, también, un análisis del proceso de mezcla turbulenta supersónica. Se analiza la influencia de la adición de calor debida a la llama de difusión. Y por último, se tratan los efectos de desequilibrio en la cinética química, deteniéndose especialmente en la extinción de la llama,considerando en primer lugar el caso de difusión laminar y a continuación un intento de extensión al caso turbulento.
Resumo:
Tipo de buque: Granelero de doble casco, cubierta corrida, castillo a proa. Habilitación y cámara de máquinas a popa, codaste abierto, proa y popa de bulbo y timón tipo Mariner. Clasificacion y cota: Bureau Veritas, AUT. Peso muerto: 50000 TPM. Propulsión/Velocidad: Motor 2T lento directamente acoplado a hélice de paso fijo. Velocidad en pruebas y plena carga con el motor al 100% MCR y 10% de margen de mar, 15 nudos. Autonomía/Capacidades: Capacidad de bodegas: 55000 m3. Capacidad de combustible: 2200 m3 (Tanques para contenidos de azufre de 4,5; 1,5 y 0,1%). Habilitación: 22 cabinas individuales con baño privado + rancho 6 personas. sistemas de carga: Sin medios de carga. Maquinaria auxiliar: 3 diesel generadores principales. Caldereta mixta gases/mecheros. Amarre: 2 molinetes combinados con maquinillas de amarre más 5 maquinillas dobles en cubierta. Todos los carreteles serán del tipo "Carretel partido"
Resumo:
TIPO DE BUQUE: LNG con tanques tipo membrana. TRIPULACIÓN: 30 personas PESO MUERTO: 32000 Toneladas VELOCIDAD EN PRUEBAS: 17,5 nudos al 90% de la M.C.R, 21 % de margen de mar. PROPULSIÓN: Turbina marina a vapor. Hélice de palas fijas CAPACIDAD DE ALMACENAMIENTO: 4 bodegas con tanques de tipo membrana de capacidad total de 51000 m3 (100 % y –163ºC). Combustible 3000 m3. D.O 250 m3. Agua dulce 200 m3. Agua destilada 200 m3. Aceite 200 m3. EQUIPO DE MANIPULACIÓN DE CARGA: 8 bombas de descarga de 700 m3/h a 150 mcl, 4 bombas de achique de 25 m3/h a 150 mcl CLASIFICACIÓN Y COTA: Bureau Veritas.+I3/3, Liquified Gas Carrier, deep sea, AUT, AUTPORT. REGLAMENTOS Y LIMITACIONES: B.V, SOLAS código gas. OTROS REQUERIMIENTOS: Gas inerte. Generador de nitrógeno. Detección de gases en espacios vacíos y lastres.
Resumo:
Una planta AIP es cualquier sistema propulsivo capaz de posibilitar la navegación de un vehículo submarino bajo la superficie del mar de forma completamente independiente de la atmósfera terrestre. El uso a bordo de submarinos de plantas AIP basadas en la reacción química entre un hidrocarburo y oxígeno (ambos almacenados en el interior del submarino) da lugar a la producción en grandes cantidades de agua y CO2, residuos que necesitan ser eliminados. En concreto, la producción de CO2 en grandes cantidades (y en estado gaseoso) constituye un auténtico problema en un submarino navegando en inmersión, ya que actualmente no resulta viable almacenarlo a bordo, y su eliminación tiene que llevarse a cabo de forma discreta y con un coste energético reducido. Actualmente, hay varias alternativas para eliminar el CO2 producido en la propulsión de un submarino navegando en inmersión, siendo la más ventajosa la disolución de dicha sustancia en agua de mar y su posterior expulsión al exterior del submarino. Esta alternativa consta básicamente de 3 etapas bien definidas: • Etapa 1.- Introducir agua de mar a bordo del submarino, haciendo bajar su presión desde la existente en el exterior hasta la presión a la que se quiere realizar el proceso de disolución. • Etapa 2.- Llevar a cabo el proceso de disolución a presión constante e independiente de la existente en el exterior del submarino. • Etapa 3.- Expulsar fuera del submarino el agua de mar saturada de CO2 haciendo subir su presión desde la correspondiente al proceso de disolución hasta la existente en el exterior. Para ejecutar las etapas 1 y 3 con un coste energético aceptable, resulta necesaria la instalación de un sistema de recuperación de energía, el cual basa su funcionamiento en aprovechar la energía producida en la caída de presión del flujo de agua entrante para elevar la presión del flujo de agua saliente saturada de CO2. El sistema arriba citado puede implementarse de 3 formas alternativas: • Recuperación de doble salto mediante máquinas hidráulicas de desplazamiento positivo. • Recuperación directa mediante cilindros estacionarios dotados de pistones internos. • Recuperación directa mediante cilindros rotativos sin pistones internos. Por otro lado, para ejecutar la etapa 2 de forma silenciosa, y sin ocupar excesivo volumen, resulta necesaria la instalación de un sistema de disolución de CO2 en agua de mar a baja presión, existiendo actualmente 2 principios funcionales viables: • Dispersión de finas burbujas de gas en el seno de una masa de agua. • Difusión directa de CO2 a través de una inter-fase líquido/gas estable sin procesos de dispersión previos. Una vez dicho todo esto, el objetivo de la tesis consiste en llevar a cabo dos estudios comparativos: uno para analizar las ventajas/inconvenientes que presentan las 3 alternativas de recuperación de energía citadas y otro para analizar las ventajas/inconvenientes que presentan los sistemas de disolución de CO2 en agua de mar basados en los 2 principios funcionales mencionados. En ambos estudios se van a tener en cuenta las singularidades propias de una instalación a bordo de submarinos. Para finalizar este resumen, cabe decir que la ejecución de los estudios arriba citados ha exigido el desarrollo de un código software específico (no disponible en la bibliografía) para llevar a cabo la simulación numérica de los distintos sistemas presentados en la tesis. Este código software se ha desarrollado bajo una serie de restricciones importantes, las cuales se listan a continuación: • Ha sido necesario tener en cuenta fluidos de trabajo multi-componente: agua de mar con CO2 disuelto. • El fluido de trabajo se encuentra normalmente en estado líquido, habiendo sido necesario considerar fenómenos de cambio de fase únicamente en etapas incipientes. • La algoritmia se ha diseñado de la forma más simple posible, al objeto de facilitar el subsiguiente proceso de programación y reducir al máximo el tiempo de ejecución en máquina. • La algoritmia arriba citada se ha diseñado para llevar a cabo análisis de tipo comparativo solamente, y no para obtener resultados extremadamente precisos en términos absolutos.
Resumo:
Esta Tesis Doctoral se encuadra en el ámbito de la medida de emisiones contaminantes y de consumo de combustible en motores de combustión interna alternativos cuando se utilizan como plantas de potencia para propulsión de vehículos ligeros de carretera, y más concretamente en las medidas dinámicas con el vehículo circulando en tráfico real. En este ámbito, el objetivo principal de la Tesis es estudiar los problemas asociados a la medición en tiempo real con equipos embarcados de variables medioambientales, energéticas y de actividad, de vehículos ligeros propulsados por motores térmicos en tráfico real. Y como consecuencia, desarrollar un equipo y una metodología apropiada para este objetivo, con el fin de realizar consiguientemente un estudio sobre los diferentes factores que influyen sobre las emisiones y el consumo de combustible de vehículos turismo en tráfico real. La Tesis se comienza realizando un estudio prospectivo sobre los trabajos de otros autores relativos al desarrollo de equipos portátiles de medida de emisiones (Portable Emission Measurement Systems – PEMS), problemas asociados a la medición dinámica de emisiones y estudios de aplicación en tráfico real utilizando este tipo de equipos. Como resultado de este estudio se plantea la necesidad de disponer de un equipo específicamente diseñado para ser embarcado en un vehículo que sea capaz de medir en tiempo real las concentraciones de emisiones y el caudal de gases de escape, al mismo tiempo que se registran variables del motor, del vehículo y del entorno como son la pendiente y los datos meteorológicos. De esta forma se establecen las especificaciones y condiciones de diseño del equipo PEMS. Aunque al inicio de esta Tesis ya existían en el mercado algunos sistemas portátiles de medida de emisiones (PEMS: Portable Emissions Measurement Systems), en esta Tesis se investiga, diseña y construye un nuevo sistema propio, denominado MIVECO – PEMS. Se exponen, discuten y justifican todas las soluciones técnicas incorporadas en el sistema que incluyen los subsistema de análisis de gases, subsistemas de toma de muestra incluyendo caudalímetro de gases de escape, el subsistema de medida de variables del entorno y actividad del vehículo y el conjunto de sistemas auxiliares. El diseño final responde a las hipótesis y necesidades planteadas y se valida en uso real, en banco de rodillos y en comparación con otro equipos de medida de emisiones estacionarios y portátiles. En esta Tesis se presenta también toda la investigación que ha conducido a establecer la metodología de tratamiento de las señales registradas en tiempo real que incluye la sincronización, cálculos y propagación de errores. La metodología de selección y caracterización de los recorridos y circuitos y de las pautas de conducción, preparación del vehículo y calibración de los equipos forma también parte del legado de esta Tesis. Para demostrar la capacidad de medida del equipo y el tipo de resultados que pueden obtenerse y que son útiles para la comunidad científica, y las autoridades medioambientales en la parte final de esta Tesis se plantean y se presentan los resultados de varios estudios de variables endógenas y exógenas que afectan a las emisiones instantáneas y a los factores de emisión y consumo (g/km) como: el estilo de conducción, la infraestructura vial, el nivel de congestión del tráfico, tráfico urbano o extraurbano, el contenido de biocarburante, tipo de motor (diesel y encendido provocado), etc. Las principales conclusiones de esta Tesis son que es posible medir emisiones másicas y consumo de motores de vehículos en uso real y que los resultados permiten establecer políticas de reducción de impacto medio ambiental y de eficiencia energética, pero, se deben establecer unas metodologías precisas y se debe tener mucho cuidado en todo el proceso de calibración, medida y postratamientos de los datos. Abstract This doctoral thesis is in the field of emissions and fuel consumption measurement of reciprocating internal combustion engines when are used as power-trains for light-duty road vehicles, and especially in the real-time dynamic measurements procedures when the vehicle is being driven in real traffic. In this context, the main objective of this thesis is to study the problems associated with on-board real-time measuring systems of environmental, energy and activity variables of light vehicles powered by internal combustion engines in real traffic, and as a result, to develop an instrument and an appropriate methodology for this purpose, and consequently to make a study of the different factors which influence the emissions and the fuel consumption of passenger cars in real traffic. The thesis begins developing a prospective study on other authors’ works about development of Portable Emission Measurement Systems (PEMS), problems associated with dynamic emission measurements and application studies on actual traffic using PEMS. As a result of this study, it was shown that a measuring system specifically designed for being on-board on a vehicle, which can measure in real time emission concentrations and exhaust flow, and at the same time to record motor vehicle and environment variables as the slope and atmospheric data, is needed; and the specifications and design parameters of the equipment are proposed. Although at the beginning of this research work there were already on the market some PEMS, in this Thesis a new system is researched, designed and built, called MIVECO – PEMS, in order to meet such measurements needs. Following that, there are presented, discussed and justify all technical solutions incorporated in the system, including the gas analysis subsystem, sampling and exhaust gas flowmeter subsystem, the subsystem for measurement of environment variables and of the vehicle activity and the set of auxiliary subsystems. The final design meets the needs and hypotheses proposed, and is validated in real-life use and chassis dynamometer testing and is also compared with other stationary and on-board systems. This thesis also presents all the research that has led to the methodology of processing the set of signals recorded in real time including signal timing, calculations and error propagation. The methodology to select and characterize of the routes and circuits, the driving patterns, and the vehicle preparation and calibration of the instruments and sensors are part of the legacy of this thesis. To demonstrate the measurement capabilities of the system and the type of results that can be obtained and that are useful for the scientific community and the environmental authorities, at the end of this Thesis is presented the results of several studies of endogenous and exogenous variables that affect the instantaneous and averaged emissions and consumption factors (g/km), as: driving style, road infrastructure, the level of traffic congestion, urban and extra-urban traffic, biofuels content, type of engine (diesel or spark ignition) etc. The main conclusions of this thesis are that it is possible to measure mass emissions and consumption of vehicle engines in actual use and that the results allow us to establish policies to reduce environmental impact and improve energy efficiency, but, to establish precise methodologies and to be very careful in the entire process of calibration, measurement and data post-treatment is necessary.
Resumo:
El proyecto del buque a realizar tiene los siguientes requisitos: - Tipo de buque: Granelero de doble casco, cubierta corrida, castillo a proa. Habilitación y cámara de máquinas a popa, codaste abierto, proa y popa de bulbo y timón tipo Mariner. - Clasificación y cota: Bureau Veritas, AUT. - Peso muerto: 50000 TPM. - Propulsión/Velocidad: Motor 2T lento directamente acoplado a hélice de paso fijo. Velocidad en pruebas y plena carga con el motor al 100% MCR y 10% de margen de mar, 15 nudos. - Autonomía/Capacidades: Capacidad de bodegas: 55000 3 m . Capacidad de combustible: 2200 3 m (tanques para contenidos de azufre de 4.5; 1.5 y 0.1%). Capacidad de lastre: se podrá utilizar una bodega central como inundable. - Habilitación: 22 cabinas individuales con baño privado + rancho 6 personas. - Sistema de carga: Sin medios de carga. - Maquinaria auxiliar: 3 diesel generadores principales. Caldereta mixta gases/mecheros. - Amarre: 2 molinetes combinados con maquinillas de amarre más 5 maquinillas dobles en cubierta. Todos los carreteles serán del tipo “carretel partido”.
Resumo:
La propulsión eléctrica constituye hoy una tecnología muy competitiva y de gran proyección de futuro. Dentro de los diversos motores de plasma existentes, el motor de efecto Hall ha adquirido una gran madurez y constituye un medio de propulsión idóneo para un rango amplio de misiones. En la presente Tesis se estudian los motores Hall con geometría convencional y paredes dieléctricas. La compleja interacción entre los múltiples fenómenos físicos presentes hace que sea difícil la simulación del plasma en estos motores. Los modelos híbridos son los que representan un mejor compromiso entre precisión y tiempo de cálculo. Se basan en utilizar un modelo fluido para los electrones y algoritmos de dinámica de partículas PIC (Particle-In- Cell) para los iones y los neutros. Permiten hacer uso de la hipótesis de cuasineutralidad del plasma, a cambio de resolver separadamente las capas límite (o vainas) que se forman en torno a las paredes de la cámara. Partiendo de un código híbrido existente, llamado HPHall-2, el objetivo de la Tesis doctoral ha sido el desarrollo de un código híbrido avanzado que mejorara la simulación de la descarga de plasma en un motor de efecto Hall. Las actualizaciones y mejoras realizadas en las diferentes partes que componen el código comprenden tanto aspectos teóricos como numéricos. Fruto de la extensa revisión de la algoritmia del código HPHall-2 se han conseguido reducir los errores de precisión un orden de magnitud, y se ha incrementado notablemente su consistencia y robustez, permitiendo la simulación del motor en un amplio rango de condiciones. Algunos aspectos relevantes a destacar en el subcódigo de partículas son: la implementación de un nuevo algoritmo de pesado que permite determinar de forma más precisa el flujo de las magnitudes del plasma; la implementación de un nuevo algoritmo de control de población, que permite tener suficiente número de partículas cerca de las paredes de la cámara, donde los gradientes son mayores y las condiciones de cálculo son más críticas; las mejoras en los balances de masa y energía; y un mejor cálculo del campo eléctrico en una malla no uniforme. Merece especial atención el cumplimiento de la condición de Bohm en el borde de vaina, que en los códigos híbridos representa una condición de contorno necesaria para obtener una solución consistente con el modelo de interacción plasma-pared, y que en HPHall-2 aún no se había resuelto satisfactoriamente. En esta Tesis se ha implementado el criterio cinético de Bohm para una población de iones con diferentes cargas eléctricas y una gran dispersión de velocidades. En el código, el cumplimiento de la condición cinética de Bohm se consigue por medio de un algoritmo que introduce una fina capa de aceleración nocolisional adyacente a la vaina y mide adecuadamente el flujo de partículas en el espacio y en el tiempo. Las mejoras realizadas en el subcódigo de electrones incrementan la capacidad de simulación del código, especialmente en la región aguas abajo del motor, donde se simula la neutralización del chorro del plasma por medio de un modelo de cátodo volumétrico. Sin abordar el estudio detallado de la turbulencia del plasma, se implementan modelos sencillos de ajuste de la difusión anómala de Bohm, que permiten reproducir los valores experimentales del potencial y la temperatura del plasma, así como la corriente de descarga del motor. En cuanto a los aspectos teóricos, se hace especial énfasis en la interacción plasma-pared y en la dinámica de los electrones secundarios libres en el interior del plasma, cuestiones que representan hoy en día problemas abiertos en la simulación de los motores Hall. Los nuevos modelos desarrollados buscan una imagen más fiel a la realidad. Así, se implementa el modelo de vaina de termalización parcial, que considera una función de distribución no-Maxwelliana para los electrones primarios y contabiliza unas pérdidas energéticas más cercanas a la realidad. Respecto a los electrones secundarios, se realiza un estudio cinético simplificado para evaluar su grado de confinamiento en el plasma, y mediante un modelo fluido en el límite no-colisional, se determinan las densidades y energías de los electrones secundarios libres, así como su posible efecto en la ionización. El resultado obtenido muestra que los electrones secundarios se pierden en las paredes rápidamente, por lo que su efecto en el plasma es despreciable, no así en las vainas, donde determinan el salto de potencial. Por último, el trabajo teórico y de simulación numérica se complementa con el trabajo experimental realizado en el Pnnceton Plasma Physics Laboratory, en el que se analiza el interesante transitorio inicial que experimenta el motor en el proceso de arranque. Del estudio se extrae que la presencia de gases residuales adheridos a las paredes juegan un papel relevante, y se recomienda, en general, la purga completa del motor antes del modo normal de operación. El resultado final de la investigación muestra que el código híbrido desarrollado representa una buena herramienta de simulación de un motor Hall. Reproduce adecuadamente la física del motor, proporcionando resultados similares a los experimentales, y demuestra ser un buen laboratorio numérico para estudiar el plasma en el interior del motor. Abstract Electric propulsion is today a very competitive technology and has a great projection into the future. Among the various existing plasma thrusters, the Hall effect thruster has acquired a considerable maturity and constitutes an ideal means of propulsion for a wide range of missions. In the present Thesis only Hall thrusters with conventional geometry and dielectric walls are studied. The complex interaction between multiple physical phenomena makes difficult the plasma simulation in these engines. Hybrid models are those representing a better compromise between precision and computational cost. They use a fluid model for electrons and Particle-In-Cell (PIC) algorithms for ions and neutrals. The hypothesis of plasma quasineutrality is invoked, which requires to solve separately the sheaths formed around the chamber walls. On the basis of an existing hybrid code, called HPHall-2, the aim of this doctoral Thesis is to develop an advanced hybrid code that better simulates the plasma discharge in a Hall effect thruster. Updates and improvements of the code include both theoretical and numerical issues. The extensive revision of the algorithms has succeeded in reducing the accuracy errors in one order of magnitude, and the consistency and robustness of the code have been notably increased, allowing the simulation of the thruster in a wide range of conditions. The most relevant achievements related to the particle subcode are: the implementation of a new weighing algorithm that determines more accurately the plasma flux magnitudes; the implementation of a new algorithm to control the particle population, assuring enough number of particles near the chamber walls, where there are strong gradients and the conditions to perform good computations are more critical; improvements in the mass and energy balances; and a new algorithm to compute the electric field in a non-uniform mesh. It deserves special attention the fulfilment of the Bohm condition at the edge of the sheath, which represents a boundary condition necessary to match consistently the hybrid code solution with the plasma-wall interaction, and remained as a question unsatisfactory solved in the HPHall-2 code. In this Thesis, the kinetic Bohm criterion has been implemented for an ion particle population with different electric charges and a large dispersion in their velocities. In the code, the fulfilment of the kinetic Bohm condition is accomplished by an algorithm that introduces a thin non-collisional layer next to the sheaths, producing the ion acceleration, and measures properly the flux of particles in time and space. The improvements made in the electron subcode increase the code simulation capabilities, specially in the region downstream of the thruster, where the neutralization of the plasma jet is simulated using a volumetric cathode model. Without addressing the detailed study of the plasma turbulence, simple models for a parametric adjustment of the anomalous Bohm difussion are implemented in the code. They allow to reproduce the experimental values of the plasma potential and the electron temperature, as well as the discharge current of the thruster. Regarding the theoretical issues, special emphasis has been made in the plasma-wall interaction of the thruster and in the dynamics of free secondary electrons within the plasma, questions that still remain unsolved in the simulation of Hall thrusters. The new developed models look for results closer to reality, such as the partial thermalization sheath model, that assumes a non-Maxwellian distribution functions for primary electrons, and better computes the energy losses at the walls. The evaluation of secondary electrons confinement within the chamber is addressed by a simplified kinetic study; and using a collisionless fluid model, the densities and energies of free secondary electrons are computed, as well as their effect on the plasma ionization. Simulations show that secondary electrons are quickly lost at walls, with a negligible effect in the bulk of the plasma, but they determine the potential fall at sheaths. Finally, numerical simulation and theoretical work is complemented by the experimental work carried out at the Princeton Plasma Physics Laboratory, devoted to analyze the interesting transitional regime experienced by the thruster in the startup process. It is concluded that the gas impurities adhered to the thruster walls play a relevant role in the transitional regime and, as a general recomendation, a complete purge of the thruster before starting its normal mode of operation it is suggested. The final result of the research conducted in this Thesis shows that the developed code represents a good tool for the simulation of Hall thrusters. The code reproduces properly the physics of the thruster, with results similar to the experimental ones, and represents a good numerical laboratory to study the plasma inside the thruster.
Resumo:
The purpose of this investigation was the determination of the aerodynamic performance of sails and gain knowledge of the phenomena involved in order to improve the aerody¬namic characteristics. In this research, the airflow around different sails in four scenarios was studied. The method to analyze these scenarios was the combination of numerical simulations and experimental tests by taking advantage of the best of each tool. Two different Com¬putational Fluid Dynamic codes were utilized: the ANSYS-CFX and the CD-Adapco’s STAR-CCM+. The experimental tests were conducted in the Atmospheric Boundary Layer Wind Tunnel at the Universidad de Granada (Spain), the Twisted Flow Wind Tunnel at the University of Auckland (New Zealand) and the A9 Wind Tunnel at the Universidad Polit´ecnica de Madrid (Spain). Through this research, it was found the three-dimensional effect of the mast on the aerodynamic performance of an IMS Class boat. The pressure distribution on a Transpac 52 Class mainsail was also determined. Moreover, the aerodynamic perfor¬mance of the 43ft and 60ft Dhow Classes was obtained. Finally, a feasibility study was conducted to use a structural wing in combination with conventional propulsions systems. The main conclusion was that this research clarified gaps on the knowledge of the aerodynamic performance of sails. Moreover, since commercial codes were not specifically designed to study sails, a procedure was developed. On the other hand, innovative experimental techniques were used and applied to model-scale sails. The achievements of this thesis are promising and some of the results are already in use by the industry on a daily basis. El propósito de este estudio era determinar el comportamiento aerodinámico de unas velas y mejorar el conocimiento de los fenómenos que suceden para optimizar las características aerodinámicas de dichas velas. En esta investigación se estudió el flujo de aire alrededor de diferentes velas en cuatro escenarios. El método para analizar estos escenarios fue la combinación de simulaciones numéricas y ensayos experimentales mediante el aprovechamiento de las ventajas de cada herramienta. Se utilizaron dos códigos de dinámica de fluidos computacional: el ANSYS-CFX y el STAR-CCM+ de la empresa CD-Adapco. Los ensayos experimentales se desarrollaron en el túnel de viento de capa límite de la Universidad de Granada (España), el túnel de viento de la Universidad de Auckland (Nueva Zelanda) y en el túnel A9 de la Universidad Politécnica de Madrid (España). Mediante esta investigación, se determinó el efecto tridimensional del mástil en un velero de la clase IMS. También se describió la distribución de presiones sobre una mayor de un Transpac 52. Además, se obtuvo el comportamiento aerodinámico de las clases 43ft y 60ft de los veleros Dhows. Finalmente, se llevó a cabo un estudio de viabilidad de la utilización de un ala estructural en combinación con sistemas de propulsión convencionales. La conclusión principal de esta investigación fue la capacidad de explicar ciertas lagunas en el conocimiento del comportamiento aerodinámico de las velas en diferentes escenarios. Además, dado que los códigos comerciales no están específicamente diseñados para el estudio de velas, se desarrolló un procedimiento a tal efecto. Por otro lado, se han utilizado innovadoras técnicas experimentales y se han aplicado a modelos de velas a escala. Los logros de esta investigación son prometedores y algunos de los resultados obtenidos ya están siendo utilizados por la industria en su día a día.
Resumo:
En años recientes, se han realizado algunos esfuerzos para equipar a robots submarinos con impulsores vectorizados. Este sistema de propulsión permite el uso de una menor cantidad de impulsores, esto a su vez tiene consecuencias favorables en el volumen y costo del robot a medida que una mayor potencia de propulsión es requerida. El propósito de esta tesis es realizar un estudio sobre el modelado, control y diseño de robots submarinos de estructura paralela con impulsores vectorizados. De esta manera exponer los aspectos más importantes relativos a estos puntos, y proponer soluciones a los problemas que plantea la arquitectura de estos robots. En esta tesis se tomo como objeto de estudio el robot Remo 2, cuya estructura paralela representa una gran parte del volumen del robot y esto hace que su análisis sea el más complejo que se pueda tener en los robots de esta categoría. El diseño de este robot es un concepto radicalmente diferente al de los robots submarinos convencionales. Sus características son prometedoras, pero para poder sacar provecho de estas potencialidades es necesario un entendimiento de la dinámica del robot. En este trabajo se presenta el desarrollo y análisis de modelos analíticos, y el desarrollo de herramientas de simulación para este robot. El propósito de estas herramientas es identificar las oportunidades y restricciones impuestas por la estructura y la dinámica del vehículo. Se presenta el planteamiento (y solución) de los problemas cinemático y dinámico inverso para un robot submarino de estructura paralela. Por otro lado, se demostró por primera vez el funcionamiento del concepto del robot submarino a través de una herramienta de simulación. Haciendo uso de esta herramienta se exploro el desempeño del robot bajo diversos esquemas de control, se encontró que el robot es capaz de ejecutar con éxito diversas maniobras empleando controladores clásicos. Se presento un controlador basado en el modelo del robot y se demostró sus ventajas. Posteriormente se presento un apartado cuyo propósito es exponer aspectos importantes sobre el diseño de este tipo de robots, sobre todo aquellos que influyen en su desempeño cinetostático. Se plantea el problema del diseño óptimo de un robot tipo Remo 2, y se proponen un par de índices de desempeño globales. Otra contribución fue, en condición de coautoría, el diseño y análisis de una nueva estructura paralela la cual no ha sido considerada anteriormente en la literatura.
Resumo:
El objetivo del trabajo es estudiar el procedimiento descrito en el proyecto IMAGINE(estimación del nivel de ruido del tráfico rodado que se registra en las carreteras europeas, a partir de la obtención del nivel de potencia sonora del ruido de propulsión y del ruido de rodadura). Para validar el modelo, se compararán los resultados teóricos del proyecto con los niveles registrados en las inmediaciones de la M-40, dentro del campus de la Escuela Universitaria de Ingeniería Técnica de Telecomunicación. Para obtener los valores reales, además de lo descrito en el proyecto IMAGINE se empleará como método de medida el descrito en la ISO 1996- Parte 2 y con el instrumental con el que cuenta la Escuela. SUMMARY. The objective of this work is to analyse the procedure described in the IMAGINE project(estimation of the road traffic noise level that can be observed in the European roads, by means of obtaining the level of audible power from both the propulsion and rolling noise), in order to validate the model. The theoretical results from the project will be compared against the levels measured in the surroundings of the M-40 in Madrid, within the campus of the Escuela Universitaria de Ingeniería Técnica de Telecomunicación. To obtain the real values, the IMAGINE project and the methodology described in the norm ISO 1996 - Part 2 will be used, with the equipment made available by the Faculty.