11 resultados para Properties and microstructures

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Profiting by the increasing availability of laser sources delivering intensities above 10 9 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically steels and Al and Ti alloys) under different LSP irradiation conditions are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although several profiling techniques for identifying performance bottlenecks in logic programs have been developed, they are generally not automatic and in most cases they do not provide enough information for identifying the root causes of such bottlenecks. This complicates using their results for guiding performance improvement. We present a profiling method and tool that provides such explanations. Our profiler associates cost centers to certain program elements and can measure different types of resource-related properties that affect performance, preserving the precedence of cost centers in the cali graph. It includes an automatic method for detecting procedures that are performance bottlenecks. The profiling tool has been integrated in a previously developed run-time checking framework to allow verification of certain properties when they cannot be verified statically. The approach allows checking global computational properties which require complex instrumentation tracking information about previous execution states, such as, e.g., that the execution time accumulated by a given procedure is not greater than a given bound. We have built a prototype implementation, integrated it in the Ciao/CiaoPP system and successfully applied it to performance improvement, automatic optimization (e.g., resource-aware specialization of programs), run-time checking, and debugging of global computational properties (e.g., resource usage) in Prolog programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although several profiling techniques for identifying performance bottlenecks in logic programs have been developed, they are generally not automatic and in most cases they do not provide enough information for identifying the root causes of such bottlenecks. This complicates using their results for guiding performance improvement. We present a profiling method and tool that provides such explanations. Our profiler associates cost centers to certain program elements and can measure different types of resource-related properties that affect performance, preserving the precedence of cost centers in the call graph. It includes an automatic method for detecting procedures that are performance bottlenecks. The profiling tool has been integrated in a previously developed run-time checking framework to allow verification of certain properties when they cannot be verified statically. The approach allows checking global computational properties which require complex instrumentation tracking information about previous execution states, such as, e.g., that the execution time accumulated by a given procedure is not greater than a given bound. We have built a prototype implementation, integrated it in the Ciao/CiaoPP system and successfully applied it to performance improvement, automatic optimization (e.g., resource-aware specialization of programs), run-time checking, and debugging of global computational properties (e.g., resource usage) in Prolog programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundamental research and modelling in plasma atomic physics continue to be essential for providing basic understanding of many different topics relevant to high-energy-density plasmas. The Atomic Physics Group at the Institute of Nuclear Fusion has accumulated experience over the years in developing a collection of computational models and tools for determining the atomic energy structure, ionization balance and radiative properties of, mainly, inertial fusion and laser-produced plasmas in a variety of conditions. In this work, we discuss some of the latest advances and results of our research, with emphasis on inertial fusion and laboratory-astrophysical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical behavior and microstructure of minor ampullate gland silk (miS) of two orb-web spinning species, Argiope trifasciata and Nephila inaurata, were extensively characterized, enabling detailed comparison with other silks. The similarities and differences exhibited by miS when compared with the intensively studied major ampullate gland silk (MAS) and silkworm (Bombyx mori) silk offer a genuine opportunity for testing some of the hypotheses proposed to correlate microstructure and tensile properties in silk. In this work, we show that miSs of different species show similar properties, even when fibers spun by spiders that diverged over 100 million years are compared. The tensile properties of miS are comparable to those of MAS when tested in air, significantly in terms of work to fracture, but differ considerably when tested in water. In particular, miS does not show a supercontraction effect and an associated ground state. In this regard, the behavior of miS in water is similar to that of B. mori silk, and it is shown that the initial elastic modulus of both fibers can be explained using a common model. Intriguingly, the microstructural parameters measured in miS are comparable to those of MAS and considerably different from those found in B. mori. This fact suggests that some critical microstructural information is still missing in our description of silks, and our results suggest that the hydrophilicity of the lateral groups or the large scale organization of the sequences might be routes worth exploring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of the modified optical properties of InAs/GaAs quantum dots (QD) capped with a thin GaAs1−xSbx layer is analyzed in terms of the band structure. To do so, the size, shape, and composition of the QDs and capping layer are determined through cross-sectional scanning tunnelling microscopy and used as input parameters in an 8 × 8 k·p model. As the Sb content is increased, there are two competing effects determining carrier confinement and the oscillator strength: the increased QD height and reduced strain on one side and the reduced QD-capping layer valence band offset on the other. Nevertheless, the observed evolution of the photoluminescence (PL) intensity with Sb cannot be explained in terms of the oscillator strength between ground states, which decreases dramatically for Sb > 16%, where the band alignment becomes type II with the hole wavefunction localized outside the QD in the capping layer. Contrary to this behaviour, the PL intensity in the type II QDs is similar (at 15 K) or even larger (at room temperature) than in the type I Sb-free reference QDs. This indicates that the PL efficiency is dominated by carrier dynamics, which is altered by the presence of the GaAsSb capping layer. In particular, the presence of Sb leads to an enhanced PL thermal stability. From the comparison between the activation energies for thermal quenching of the PL and the modelled band structure, the main carrier escape mechanisms are suggested. In standard GaAs-capped QDs, escape of both electrons and holes to the GaAs barrier is the main PL quenching mechanism. For small-moderate Sb (<16%) for which the type I band alignment is kept, electrons escape to the GaAs barrier and holes escape to the GaAsSb capping layer, where redistribution and retraping processes can take place. For Sb contents above 16% (type-II region), holes remain in the GaAsSb layer and the escape of electrons from the QD to the GaAs barrier is most likely the dominant PL quenching mechanism. This means that electrons and holes behave dynamically as uncorrelated pairs in both the type-I and type-II structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on laser beam intensities above 109 W/cm2 with pulse energy of several Joules and duration of nanoseconds, Laser Shock Processing (LSP) is capable of inducing a surface compressive residual stress field. The paper presents experimental results showing the ability of LSP to improve the mechanical strength and cracking resistance of AA2024-T351 friction stir welded (FSW) joints. After introducing the FSW and LSP procedures, the results of microstructural analysis and micro-hardness are discussed. Video Image Correlation was used to measure the displacement and strain fields produced during tensile testing of flat specimens; the local and overall tensile behavior of native FSW joints vs. LSP treated were analyzed. Further, results of slow strain rate tensile testing of the FSW joints, native and LSP treated, performed in 3.5% NaCl solution are presented. The ability of LSP to improve the structural behavior of the FSW joints is underscored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fruit turgidity and firmness have shown to influence impact bruise susceptibility in apples and pears. Analysis of the impact response showed that stresses in the tissues are higher in turgid fruits, so they are more susceptible to bruising. A physical parameter, deformation at skin puncture, was able to detect fruit turgidity changes and showed to be related to bruise susceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo principal del presente trabajo es estudiar y explotar estructuras que presentan un gas bidimensional de electrones (2DEG) basadas en compuestos nitruros con alto contenido de indio. Existen muchas preguntas abiertas, relacionadas con el nitruro de indio y sus aleaciones, algunas de las cuales se han abordado en este estudio. En particular, se han investigado temas relacionados con el análisis y la tecnología del material, tanto para el InN y heteroestructuras de InAl(Ga)N/GaN como para sus aplicaciones a dispositivos avanzados. Después de un análisis de la dependencia de las propiedades del InN con respecto a tratamientos de procesado de dispositivos (plasma y térmicos), el problema relacionado con la formación de un contacto rectificador es considerado. Concretamente, su dificultad es debida a la presencia de acumulación de electrones superficiales en la forma de un gas bidimensional de electrones, debido al pinning del nivel de Fermi. El uso de métodos electroquímicos, comparados con técnicas propias de la microelectrónica, ha ayudado para la realización de esta tarea. En particular, se ha conseguido lamodulación de la acumulación de electrones con éxito. En heteroestructuras como InAl(Ga)N/GaN, el gas bidimensional está presente en la intercara entre GaN y InAl(Ga)N, aunque no haya polarización externa (estructuras modo on). La tecnología relacionada con la fabricación de transistores de alta movilidad en modo off (E-mode) es investigada. Se utiliza un método de ataque húmedo mediante una solución de contenido alcalino, estudiando las modificaciones estructurales que sufre la barrera. En este sentido, la necesidad de un control preciso sobre el material atacado es fundamental para obtener una estructura recessed para aplicaciones a transistores, con densidad de defectos e inhomogeneidad mínimos. La dependencia de la velocidad de ataque de las propiedades de las muestras antes del tratamiento es observada y comentada. Se presentan también investigaciones relacionadas con las propiedades básicas del InN. Gracias al uso de una puerta a través de un electrolito, el desplazamiento de los picos obtenidos por espectroscopia Raman es correlacionado con una variación de la densidad de electrones superficiales. En lo que concierne la aplicación a dispositivos, debido al estado de la tecnología actual y a la calidad del material InN, todavía no apto para dispositivos, la tesis se enfoca a la aplicación de heteroestructuras de InAl(Ga)N/GaN. Gracias a las ventajas de una barrera muy fina, comparada con la tecnología de AlGaN/GaN, el uso de esta estructura es adecuado para aplicaciones que requieren una elevada sensibilidad, estando el canal 2DEG más cerca de la superficie. De hecho, la sensibilidad obtenida en sensores de pH es comparable al estado del arte en términos de variaciones de potencial superficial, y, debido al poco espesor de la barrera, la variación de la corriente con el pH puede ser medida sin necesidad de un electrodo de referencia externo. Además, estructuras fotoconductivas basadas en un gas bidimensional presentan alta ganancia debida al elevado campo eléctrico en la intercara, que induce una elevada fuerza de separación entre hueco y electrón generados por absorción de luz. El uso de metalizaciones de tipo Schottky (fotodiodos Schottky y metal-semiconductormetal) reduce la corriente de oscuridad, en comparación con los fotoconductores. Además, la barrera delgada aumenta la eficiencia de extracción de los portadores. En consecuencia, se obtiene ganancia en todos los dispositivos analizados basados en heteroestructuras de InAl(Ga)N/GaN. Aunque presentando fotoconductividad persistente (PPC), los dispositivos resultan más rápidos con respeto a los valores que se dan en la literatura acerca de PPC en sistemas fotoconductivos. ABSTRACT The main objective of the present work is to study and exploit the two-dimensionalelectron- gas (2DEG) structures based on In-related nitride compounds. Many open questions are analyzed. In particular, technology and material-related topics are the focus of interest regarding both InNmaterial and InAl(Ga)N/GaNheterostructures (HSs) as well as their application to advanced devices. After the analysis of the dependence of InN properties on processing treatments (plasma-based and thermal), the problemof electrical blocking behaviour is taken into consideration. In particular its difficulty is due to the presence of a surface electron accumulation (SEA) in the form of a 2DEG, due to Fermi level pinning. The use of electrochemical methods, compared to standard microelectronic techniques, helped in the successful realization of this task. In particular, reversible modulation of SEA is accomplished. In heterostructures such as InAl(Ga)N/GaN, the 2DEGis present at the interface between GaN and InAl(Ga)N even without an external bias (normally-on structures). The technology related to the fabrication of normally off (E-mode) high-electron-mobility transistors (HEMTs) is investigated in heterostructures. An alkali-based wet-etching method is analysed, standing out the structural modifications the barrier underwent. The need of a precise control of the etched material is crucial, in this sense, to obtain a recessed structure for HEMT application with the lowest defect density and inhomogeneity. The dependence of the etch rate on the as-grown properties is observed and commented. Fundamental investigation related to InNis presented, related to the physics of this degeneratematerial. With the help of electrolyte gating (EG), the shift in Raman peaks is correlated to a variation in surface eletron density. As far as the application to device is concerned, due to the actual state of the technology and material quality of InN, not suitable for working devices yet, the focus is directed to the applications of InAl(Ga)N/GaN HSs. Due to the advantages of a very thin barrier layer, compared to standard AlGaN/GaN technology, the use of this structure is suitable for high sensitivity applications being the 2DEG channel closer to the surface. In fact, pH sensitivity obtained is comparable to the state-of-the-art in terms of surface potential variations, and, due to the ultrathin barrier, the current variation with pH can be recorded with no need of the external reference electrode. Moreover, 2DEG photoconductive structures present a high photoconductive gain duemostly to the high electric field at the interface,and hence a high separation strength of photogenerated electron and hole. The use of Schottky metallizations (Schottky photodiode and metal-semiconductor-metal) reduce the dark current, compared to photoconduction, and the thin barrier helps to increase the extraction efficiency. Gain is obtained in all the device structures investigated. The devices, even if they present persistent photoconductivity (PPC), resulted faster than the standard PPC related decay values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnCdO nanowires with up to 45% Cd are demonstrated showing room temperature photoluminescence (PL) down to 2.02 eV and a radiative efficiency similar to that of ZnO nanowires. Analysis of the microstructure in individual nanowires confirms the presence of a single wurtzite phase even at the highest Cd contents, with a homogeneous distribution of Cd both in the longitudinal and transverse directions. Thermal annealing at 550 °C yields an overall improvement of the PL, which is blue-shifted as a result of the homogeneous decrease of Cd throughout the nanowire, but the single wurtzite structure is fully maintained.