4 resultados para Propensity
em Universidad Politécnica de Madrid
Resumo:
During the last years cities around the world have invested important quantities of money in measures for reducing congestion and car-trips. Investments which are nothing but potential solutions for the well-known urban sprawl phenomenon, also called the “development trap” that leads to further congestion and a higher proportion of our time spent in slow moving cars. Over the path of this searching for solutions, the complex relationship between urban environment and travel behaviour has been studied in a number of cases. The main question on discussion is, how to encourage multi-stop tours? Thus, the objective of this paper is to verify whether unobserved factors influence tour complexity. For this purpose, we use a data-base from a survey conducted in 2006-2007 in Madrid, a suitable case study for analyzing urban sprawl due to new urban developments and substantial changes in mobility patterns in the last years. A total of 943 individuals were interviewed from 3 selected neighbourhoods (CBD, urban and suburban). We study the effect of unobserved factors on trip frequency. This paper present the estimation of an hybrid model where the latent variable is called propensity to travel and the discrete choice model is composed by 5 alternatives of tour type. The results show that characteristics of the neighbourhoods in Madrid are important to explain trip frequency. The influence of land use variables on trip generation is clear and in particular the presence of commercial retails. Through estimation of elasticities and forecasting we determine to what extent land-use policy measures modify travel demand. Comparing aggregate elasticities with percentage variations, it can be seen that percentage variations could lead to inconsistent results. The result shows that hybrid models better explain travel behavior than traditional discrete choice models.
Resumo:
La relación entre la estructura urbana y la movilidad ha sido estudiada desde hace más de 70 años. El entorno urbano incluye múltiples dimensiones como por ejemplo: la estructura urbana, los usos de suelo, la distribución de instalaciones diversas (comercios, escuelas y zonas de restauración, parking, etc.). Al realizar una revisión de la literatura existente en este contexto, se encuentran distintos análisis, metodologías, escalas geográficas y dimensiones, tanto de la movilidad como de la estructura urbana. En este sentido, se trata de una relación muy estudiada pero muy compleja, sobre la que no existe hasta el momento un consenso sobre qué dimensión del entorno urbano influye sobre qué dimensión de la movilidad, y cuál es la manera apropiada de representar esta relación. Con el propósito de contestar estas preguntas investigación, la presente tesis tiene los siguientes objetivos generales: (1) Contribuir al mejor entendimiento de la compleja relación estructura urbana y movilidad. y (2) Entender el rol de los atributos latentes en la relación entorno urbano y movilidad. El objetivo específico de la tesis es analizar la influencia del entorno urbano sobre dos dimensiones de la movilidad: número de viajes y tipo de tour. Vista la complejidad de la relación entorno urbano y movilidad, se pretende contribuir al mejor entendimiento de la relación a través de la utilización de 3 escalas geográficas de las variables y del análisis de la influencia de efectos inobservados en la movilidad. Para el análisis se utiliza una base de datos conformada por tres tipos de datos: (1) Una encuesta de movilidad realizada durante los años 2006 y 2007. Se obtuvo un total de 943 encuestas, en 3 barrios de Madrid: Chamberí, Pozuelo y Algete. (2) Información municipal del Instituto Nacional de Estadística: dicha información se encuentra enlazada con los orígenes y destinos de los viajes recogidos en la encuesta. Y (3) Información georeferenciada en Arc-GIS de los hogares participantes en la encuesta: la base de datos contiene información respecto a la estructura de las calles, localización de escuelas, parking, centros médicos y lugares de restauración. Se analizó la correlación entre e intra-grupos y se modelizaron 4 casos de atributos bajo la estructura ordinal logit. Posteriormente se evalúa la auto-selección a través de la estimación conjunta de las elecciones de tipo de barrio y número de viajes. La elección del tipo de barrio consta de 3 alternativas: CBD, Urban y Suburban, según la zona de residencia recogida en las encuestas. Mientras que la elección del número de viajes consta de 4 categorías ordinales: 0 viajes, 1-2 viajes, 3-4 viajes y 5 o más viajes. A partir de la mejor especificación del modelo ordinal logit. Se desarrolló un modelo joint mixed-ordinal conjunto. Los resultados indican que las variables exógenas requieren un análisis exhaustivo de correlaciones con el fin de evitar resultados sesgados. ha determinado que es importante medir los atributos del BE donde se realiza el viaje, pero también la información municipal es muy explicativa de la movilidad individual. Por tanto, la percepción de las zonas de destino a nivel municipal es considerada importante. En el contexto de la Auto-selección (self-selection) es importante modelizar conjuntamente las decisiones. La Auto-selección existe, puesto que los parámetros estimados conjuntamente son significativos. Sin embargo, sólo ciertos atributos del entorno urbano son igualmente importantes sobre la elección de la zona de residencia y frecuencia de viajes. Para analizar la Propensión al Viaje, se desarrolló un modelo híbrido, formado por: una variable latente, un indicador y un modelo de elección discreta. La variable latente se denomina “Propensión al Viaje”, cuyo indicador en ecuación de medida es el número de viajes; la elección discreta es el tipo de tour. El modelo de elección consiste en 5 alternativas, según la jerarquía de actividades establecida en la tesis: HOME, no realiza viajes durante el día de estudio, HWH tour cuya actividad principal es el trabajo o estudios, y no se realizan paradas intermedias; HWHs tour si el individuo reaiza paradas intermedias; HOH tour cuya actividad principal es distinta a trabajo y estudios, y no se realizan paradas intermedias; HOHs donde se realizan paradas intermedias. Para llegar a la mejor especificación del modelo, se realizó un trabajo importante considerando diferentes estructuras de modelos y tres tipos de estimaciones. De tal manera, se obtuvieron parámetros consistentes y eficientes. Los resultados muestran que la modelización de los tours, representa una ventaja sobre la modelización de los viajes, puesto que supera las limitaciones de espacio y tiempo, enlazando los viajes realizados por la misma persona en el día de estudio. La propensión al viaje (PT) existe y es específica para cada tipo de tour. Los parámetros estimados en el modelo híbrido resultaron significativos y distintos para cada alternativa de tipo de tour. Por último, en la tesis se verifica que los modelos híbridos representan una mejora sobre los modelos tradicionales de elección discreta, dando como resultado parámetros consistentes y más robustos. En cuanto a políticas de transporte, se ha demostrado que los atributos del entorno urbano son más importantes que los LOS (Level of Service) en la generación de tours multi-etapas. la presente tesis representa el primer análisis empírico de la relación entre los tipos de tours y la propensión al viaje. El concepto Propensity to Travel ha sido desarrollado exclusivamente para la tesis. Igualmente, el desarrollo de un modelo conjunto RC-Number of trips basado en tres escalas de medida representa innovación en cuanto a la comparación de las escalas geográficas, que no había sido hecha en la modelización de la self-selection. The relationship between built environment (BE) and travel behaviour (TB) has been studied in a number of cases, using several methods - aggregate and disaggregate approaches - and different focuses – trip frequency, automobile use, and vehicle miles travelled and so on. Definitely, travel is generated by the need to undertake activities and obtain services, and there is a general consensus that urban components affect TB. However researches are still needed to better understand which components of the travel behaviour are affected most and by which of the urban components. In order to fill the gap in the research, the present dissertation faced two main objectives: (1) To contribute to the better understanding of the relationship between travel demand and urban environment. And (2) To develop an econometric model for estimating travel demand with urban environment attributes. With this purpose, the present thesis faced an exhaustive research and computation of land-use variables in order to find the best representation of BE for modelling trip frequency. In particular two empirical analyses are carried out: 1. Estimation of three dimensions of travel demand using dimensions of urban environment. We compare different travel dimensions and geographical scales, and we measure self-selection contribution following the joint models. 2. Develop a hybrid model, integrated latent variable and discrete choice model. The implementation of hybrid models is new in the analysis of land-use and travel behaviour. BE and TB explicitly interact and allow richness information about a specific individual decision process For all empirical analysis is used a data-base from a survey conducted in 2006 and 2007 in Madrid. Spatial attributes describing neighbourhood environment are derived from different data sources: National Institute of Statistics-INE (Administrative: municipality and district) and GIS (circular units). INE provides raw data for such spatial units as: municipality and district. The construction of census units is trivial as the census bureau provides tables that readily define districts and municipalities. The construction of circular units requires us to determine the radius and associate the spatial information to our households. The first empirical part analyzes trip frequency by applying an ordered logit model. In this part is studied the effect of socio-economic, transport and land use characteristics on two travel dimensions: trip frequency and type of tour. In particular the land use is defined in terms of type of neighbourhoods and types of dwellers. Three neighbourhood representations are explored, and described three for constructing neighbourhood attributes. In particular administrative units are examined to represent neighbourhood and circular – unit representation. Ordered logit models are applied, while ordinal logit models are well-known, an intensive work for constructing a spatial attributes was carried out. On the other hand, the second empirical analysis consists of the development of an innovative econometric model that considers a latent variable called “propensity to travel”, and choice model is the choice of type of tour. The first two specifications of ordinal models help to estimate this latent variable. The latent variable is unobserved but the manifestation is called “indicators”, then the probability of choosing an alternative of tour is conditional to the probability of latent variable and type of tour. Since latent variable is unknown we fit the integral over its distribution. Four “sets of best variables” are specified, following the specification obtained from the correlation analysis. The results evidence that the relative importance of SE variables versus BE variables depends on how BE variables are measured. We found that each of these three spatial scales has its intangible qualities and drawbacks. Spatial scales play an important role on predicting travel demand due to the variability in measures at trip origin/destinations within the same administrative unit (municipality, district and so on). Larger units will produce less variation in data; but it does not affect certain variables, such as public transport supply, that are more significant at municipality level. By contrast, land-use measures are more efficient at district level. Self-selection in this context, is weak. Thus, the influence of BE attributes is true. The results of the hybrid model show that unobserved factors affect the choice of tour complexity. The latent variable used in this model is propensity to travel that is explained by socioeconomic aspects and neighbourhood attributes. The results show that neighbourhood attributes have indeed a significant impact on the choice of the type of tours either directly and through the propensity to travel. The propensity to travel has a different impact depending on the structure of each tour and increases the probability of choosing more complex tours, such as tours with many intermediate stops. The integration of choice and latent variable model shows that omitting important perception and attitudes leads to inconsistent estimates. The results also indicate that goodness of fit improves by adding the latent variable in both sequential and simultaneous estimation. There are significant differences in the sensitivity to the latent variable across alternatives. In general, as expected, the hybrid models show a major improvement into the goodness of fit of the model, compared to a classical discrete choice model that does not incorporate latent effects. The integrated model leads to a more detailed analysis of the behavioural process. Summarizing, the effect that built environment characteristics on trip frequency studied is deeply analyzed. In particular we tried to better understand how land use characteristics can be defined and measured and which of these measures do have really an impact on trip frequency. We also tried to test the superiority of HCM on this field. We can concluded that HCM shows a major improvement into the goodness of fit of the model, compared to classical discrete choice model that does not incorporate latent effects. And consequently, the application of HCM shows the importance of LV on the decision of tour complexity. People are more elastic to built environment attributes than level of services. Thus, policy implications must take place to develop more mixed areas, work-places in combination with commercial retails.
Resumo:
A Monte Carlo computer simulation technique, in which a continuum system is modeled employing a discrete lattice, has been applied to the problem of recrystallization. Primary recrystallization is modeled under conditions where the degree of stored energy is varied and nucleation occurs homogeneously (without regard for position in the microstructure). The nucleation rate is chosen as site saturated. Temporal evolution of the simulated microstructures is analyzed to provide the time dependence of the recrystallized volume fraction and grain sizes. The recrystallized volume fraction shows sigmoidal variations with time. The data are approximately fit by the Johnson-Mehl-Avrami equation with the expected exponents, however significant deviations are observed for both small and large recrystallized volume fractions. Under constant rate nucleation conditions, the propensity for irregular grain shapes is decreased and the density of two sided grains increases.
Resumo:
Esta tesis doctoral propone un modelo de comportamiento del paciente de la clínica dental, basado en la percepción de la calidad del servicio (SERVQUAL), la fidelización del paciente, acciones de Marketing Relacional y aspectos socioeconómicos relevantes, de los pacientes de clínicas dentales. En particular, el estudio de campo se lleva a cabo en el ámbito geográfico de la Comunidad de Madrid, España, durante los años 2012 y 2013. La primera parte del proceso de elaboración del modelo está basada en la recolección de datos. Para ello, se realizaron cinco entrevistas a expertos dentistas y se aplicaron dos tipos encuestas diferentes: una para el universo formado por el conjunto de los pacientes de las clínicas dentales y la otra para el universo formado el conjunto de los dentistas de las clínicas dentales de la Comunidad de Madrid. Se obtuvo muestras de: 200 encuestas de pacientes y 220 encuestas de dentistas activos colegiados en el Ilustre Colegio Oficial de Odontólogos y Estomatólogos de la I Región Madrid. En la segunda parte de la elaboración del modelo, se realizó el análisis de los datos, la inducción y síntesis del modelo propuesto. Se utilizó la metodología de modelos gráficos probabilísticos, específicamente, una Red Bayesiana, donde se integraron variables (nodos) y sus dependencias estadísticas causales (arcos dirigidos), que representan el conocimiento obtenido de los datos recopilados en las encuestas y el conocimiento derivado de investigaciones precedentes en el área. Se obtuvo una Red Bayesiana compuesta por 6 nodos principales, de los cuales dos de ellos son nodos de observación directa: “Revisit Intention” y “SERVQUAL”, y los otros cuatro nodos restantes son submodelos (agrupaciones de variables), estos son respectivamente: “Attitudinal”, “Disease Information”, “Socioeconomical” y “Services”. Entre las conclusiones principales derivadas del uso del modelo, como herramientas de inferencia y los análisis de las entrevistas realizadas se obtiene que: (i) las variables del nodo “Attitudinal” (submodelo), son las más sensibles y significativas. Al realizarse imputaciones particulares en las variables que conforman el nodo “Attitudinal” (“RelationalMk”, “Satisfaction”, “Recommendation” y “Friendship”) se obtienen altas probabilidades a posteriori en la fidelidad del paciente de la clínica dental, medida por su intención de revisita. (ii) En el nodo “Disease Information” (submodelo) se destaca la relación de dependencia causal cuando se imputa la variable “Perception of disease” en “SERVQUAL”, demostrando que la percepción de la gravedad del paciente condiciona significativamente la percepción de la calidad del servicio del paciente. Como ejemplo destacado, si se realiza una imputación en la variable “Clinic_Type” se obtienen altas probabilidades a posteriori de las variables “SERVQUAL” y “Revisit Intention”, lo que evidencia, que el tipo de clínica dental influye significativamente en la percepción de la calidad del servicio y en la fidelidad del paciente (intención de revisita). (iii) En el nodo “Socioeconomical” (submodelo) la variable “Sex” resultó no ser significativa cuando se le imputaban diferentes valores, por el contrario, la variable “Age” e “Income” mostraban altas variabilidades en las probabilidades a posteriori cuando se imputaba alguna variable del submodelo “Services”, lo que evidencia, que estas variables condicionan la intención de contratar servicios (“Services”), sobretodo en las franjas de edad de 30 a 51 años en pacientes con ingresos entre 3000€ y 4000€. (iv) En el nodo “Services” (submodelo) los pacientes de las clínicas dentales mostraron altas probabilidades a priori para contratar servicios de fisiotrapia oral y gingival: “Dental Health Education” y “Parking”. (v) Las variables de fidelidad del paciente medidas desde su perspectiva comportamental que fueron utilizadas en el modelo: “Visit/year” “Time_clinic”, no aportaron información significativa. Tampoco, la variable de fidelidad del cliente (actitudinal): “Churn Efford”. (vi) De las entrevistas realizadas a expertos dentistas se obtiene que, los propietarios de la clínica tradicional tienen poca disposición a implementar nuevas estrategias comerciales, debido a la falta de formación en la gestión comercial y por falta de recursos y herramientas. Existe un rechazo generalizado hacia los nuevos modelos de negocios de clínicas dentales, especialmente en las franquicias y en lo que a políticas comerciales se refiere. Esto evidencia una carencia de gerencia empresarial en el sector. Como líneas futuras de investigación, se propone profundizar en algunas relaciones de dependencia (causales) como SERVQUALServices; SatisfactionServices; RelationalMKServices, Perception of diseaseSatisfaction, entre otras. Así como, otras variables de medición de la fidelidad comportamental que contribuyan a la mejora del modelo, como por ej. Gasto del paciente y rentabilidad de la visita. ABSTRACT This doctoral dissertation proposes a model of the behavior of the dental-clinic customer, based on the service-quality perception (SERVQUAL), loyalty, Relational Marketing and some relevant socio-economical characteristics, of the dental-clinic customers. In particular, the field study has been developed in the geographical region of Madrid, Spain during the years 2012 and 2013. The first stage of the preparation of the model consist in the data gathering process. For this purpose, five interviews where realized to expert dentists and also two different types of surveys: one for the universe defined by the set of dental-clinic patients and the second for the universe defined by the set of the dentists of the dental clinics of the Madrid Community. A sample of 200 surveys where collected for patients and a sample of 220 surveys where collected from active dentists belonging to the Ilustre Colegio Oficial de Odontólogos y Estomatólogos de la I Región Madrid. In the second stage of the model preparation, the processes of data-analysis, induction and synthesis of the final model where performed. The Graphic Probabilistic Models methodology was used to elaborate the final model, specifically, a Bayesian Network, where the variables (nodes) and their statistical and causal dependencies where integrated and modeled, representing thus, the obtained knowledge from the data obtained by the surveys and the scientific knowledge derived from previous research in the field. A Bayesian Net consisting on six principal nodes was obtained, of which two of them are directly observable: “Revisit Intention” y “SERVQUAL”, and the remaining four are submodels (a grouping of variables). These are: “Attitudinal”, “Disease Information”, “Socioeconomical” and “Services”. The main conclusions derived from the model, as an inference tool, and the analysis of the interviews are: (i) the variables inside the “Attitudinal” node are the most sensitive and significant. By making some particular imputations on the variables that conform the “Attitudinal” node (“RelationalMk”, “Satisfaction”, “Recommendation” y “Friendship”), high posterior probabilities (measured in revisit intention) are obtained for the loyalty of the dental-clinic patient. (ii) In the “Disease Information” node, the causal relation between the “Perception of disease” and “SERVQUAL” when “Perception of disease” is imputed is highlighted, showing that the perception of the severity of the patient’s disease conditions significantly the perception of service quality. As an example, by imputing some particular values to the “Clinic_Type” node high posterior probabilities are obtained for the “SERVQUAL” variables and for “Revisit Intention” showing that the clinic type influences significantly in the service quality perception and loyalty (revisit intention). (iii) In the “Socioeconomical” variable, the variable “Sex” showed to be non-significant, however, the “Age” variable and “Income” show high variability in its posterior probabilities when some variable from the “Services” node where imputed, showing thus, that these variables condition the intention to buy new services (“Services”), especially in the age range from 30 to 50 years in patients with incomes between 3000€ and 4000€. (iv) In the “Services” submodel the dental-clinic patients show high priors to buy services such as oral and gingival therapy, Dental Health Education and “Parking” service. (v) The obtained loyalty measures, from the behavioral perspective, “Visit/year” and “Time_clinic”, do not add significant information to the model. Neither the attitudinal loyalty component “Churn Efford”. (vi) From the interviews realized to the expert dentists it is observed that the owners of the traditional clinics have a low propensity to apply new commercial strategies due to a lack of resources and tools. In general, there exists an opposition to new business models in the sector, especially to the franchise dental model. All of this evidences a lack in business management in the sector. As future lines of research, a deep look into some statistical and causal relations is proposed, such as: SERVQUALServices; SatisfactionServices; RelationalMKServices, Perception of diseaseSatisfaction, as well as new measurement variables related to attitudinal loyalty that contribute to improve the model, for example, profit per patient and per visit.