35 resultados para Process Modelling, Viewpoint Modelling, Process Management
em Universidad Politécnica de Madrid
Resumo:
Today's knowledge society is creating increasingly competitive environments in which cognitive factors, creativity, knowledge and information determine the success of organizations. In this context the exercise of management and leadership is essential to achieve objectives, goals and relationships. Both concepts have been historically associated with the male domain because of the underrepresentation of women in managerial positions. However, the increasing participation of women in the workplace has led to the development of an extensive literature on the possible existence of differences between the styles of male and female leadership, although it has not been addressed from the analysis of competences associated with each sex. Through a participatory process the abilities and skills associated with women managers are analyzed, the differences in leadership styles and the barriers that still exist for the promotion of women into management positions. The results indicate that women particularly value the skills associated with human relationships, the female leadership style tends to be transformational and that there are still barriers to their advancement to management positions.
Resumo:
Shopfloor Management (SM) empowerment methodologies have traditionally focused on two aspects: goal achievement following rigid structures, such as SQDCME, or evolutional aspects of empowerment factors away from strategic goal achievement. Furthermore, SM Methodologies have been organized almost solely around the hierarchical structure of the organization, failing systematically to cope with the challenges that Industry 4.0 is facing. The latter include the growing complexity of value-stream networks, sustainable empowerment of the workforce (Learning Factory), an autonomous and intelligent process management (Smart Factory), the need to cope with the increasing complexity of value-stream networks (VSN) and the leadership paradigm shift to strategic alignment. This paper presents a novel Lean SM Method (LSM) called ?HOSHIN KANRI Tree? (HKT), which is based on standardization of the communication patterns among process owners (POs) by PDCA. The standardization of communication patterns by HKT technology should bring enormous benefits in value stream (VS) performance, speed of standardization and learning rates to the Industry 4.0 generation of organizations. These potential advantages of HKT are being tested at present in worldwide research.
Resumo:
We introduce the need for a distributed guideline-based decision sup-port (DSS) process, describe its characteristics, and explain how we implement-ed this process within the European Union?s MobiGuide project. In particular, we have developed a mechanism of sequential, piecemeal projection, i.e., 'downloading' small portions of the guideline from the central DSS server, to the local DSS in the patient's mobile device, which then applies that portion, us-ing the mobile device's local resources. The mobile device sends a callback to the central DSS when it encounters a triggering pattern predefined in the pro-jected module, which leads to an appropriate predefined action by the central DSS, including sending a new projected module, or directly controlling the rest of the workflow. We suggest that such a distributed architecture that explicitly defines a dialog between a central DSS server and a local DSS module, better balances the computational load and exploits the relative advantages of the cen-tral server and of the local mobile device.
Resumo:
Los Objetivos de Desarrollo del Milenio comprometieron a los países con una nueva alianza mundial de alcanzar gradualmente una cobertura universal de los niveles mínimos de bienestar en los países en desarrollo (reducir la pobreza y el hambre y dar respuesta a problemas como la mala salud, las desigualdades de género, la falta de educación, el acceso a agua salubre y la degradación ambiental). Para dar continuidad a esta iniciativa, recientemente en septiembre de 2015, la ONU promulgó la declaración de los Objetivos de Desarrollo Sostenible. Los ODM sitúan la salud en el corazón del desarrollo y establecen un novedoso pacto mundial que vincula a los países desarrollados y los países en desarrollo por medio de obligaciones claras y recíprocas. En este sentido, diversos organismos de cooperación a través de sus programas de cooperación internacional, tratan de mejorar el acceso a la asistencia sanitaria, especialmente a la población vulnerable que vive en zonas rurales de países en desarrollo. Con el fin de ayudar a cumplir los ODM que apoyan los temas de salud en dicha población, estos organismos desarrollan proyectos que despliegan sistemas de e-salud. Las intervenciones se enfrentan a múltiples retos: condicionantes de los países en desarrollo, las necesidades y demandas de los sistemas sanitarios y la complejidad de implantar las TIC en entornos complejos y altamente dinámicos como son los países en desarrollo. Estos condicionantes ocasionan la mayoría de proyectos fallidos que terminan convirtiéndose en soluciones aisladas, que anteponen la tecnología a las necesidades de la población y no generan el impacto esperado en su desarrollo. En este contexto tuvo origen esta tesis doctoral, que persigue como objetivo analizar, planificar, diseñar, verificar y validar un marco arquitectónico de implantación de sistemas de e-salud en áreas rurales de países en desarrollo, que promueva el mejoramiento de la calidad de vida de la población vulnerable de estas regiones y la efectividad de las intervenciones de e-salud en el marco de proyectos de cooperación al desarrollo. Para lograrlo, tomé como punto de partida, diversas estrategias, modelos, metodologías de implantación de e-salud, modelos de gestión de proyectos propuestos por distintos organismos internacionales y propuse una instanciación de estos modelos a proyectos de implantación de sistemas de e-salud en países en desarrollo. Apliqué la metodología action research y los enfoques twin track, middle out y design thinking que me permitieron el refinamiento iterativo del modelo propuesto en la tesis doctoral mediante el trabajo de campo realizado en dos zonas rurales de países de Centroamérica: Jocotán (Guatemala) y San José de Cusmapa (Nicaragua). Como resultado obtuve un modelo experimental basado en cuatro componentes: un modelo de referencia tipo, un modelo conceptual de e-salud, los procesos de gestión y de implantación de sistemas de e-salud en países en desarrollo y una arquitectura de referencia. El modelo experimental resultante aporta herramientas importantes para el despliegue de sistemas de e-salud en países en desarrollo. Se ha propuesto un modelo de referencia que proporciona una visión holística del contexto del país en desarrollo donde se desarrollarán las intervenciones. Un modelo conceptual de e-salud que representa los principales conceptos involucrados en un sistema de e-salud. Los procesos ii- de gestión del proyecto y de implantación del sistema que proporcionan a los grupos de cooperación, herramientas para el análisis, diseño, desarrollo y despliegue de los sistemas de e-salud en áreas rurales de países en desarrollo. Y finalmente la arquitectura de referencia que sienta las bases para la aplicación de estos procesos a un contexto en particular. Las líneas futuras de trabajo sugieren extender el modelo a más casos de estudio que permitan su refinamiento y evaluar los futuros usos que pueden surgir de los sistemas de e-salud resultantes. ABSTRACT Millennium Development Goals (MDGs) committing the countries with a new global partnership to achieve universal coverage of minimum levels of well-being in Developing Countries (for addressing extreme poverty in its many dimensions-income poverty, hunger, disease, lack of adequate housing, and exclusion-while promoting gender equality, education, and environmental sustainability). From September 2015, these goals are replaces with Sustainable Development Goals (SDGs). The MDG place health at the heart of development and establish a novel global compact, linking developed and developing countries through clear, reciprocal obligations. Many public and private institutions promote international cooperation programs to support in achieving the MDGs. Some of these cooperation programs deal improving access to healthcare to poor people living in isolated areas from developing countries. In order to accomplish this goal organizations perform projects (interventions or cooperation projects) that deploy e-health systems in these zones. Nevertheless, this kind of projects face multiple challenges that dismiss the effectiveness of the projects results. In particular, cooperation teams face issues such as constraints in developing countries, lack of electrical and ICT infrastructure, scarce transport, extreme climate conditions, lack ICT capacity, lack of access to healthcare and inefficient delivery methods, etc. Hence, these issues increase the complexity of implementing e-health in developing countries and then causes the most projects fail. In other words, the solutions do not meet population needs and do not generate the expected impact on development. This context is the starting point of this doctoral thesis, which deals with analysing, planning, designing, testing and validating an architectural framework in order to implement e-health systems in rural areas from developing countries, promote development of the population in these regions, and thus improve the impact of interventions of development cooperation projects. To achieve this goal, I took as a starting point the strategies, models, e-health implementation methodologies and projects management models proposed by various international agencies. Then I proposed an instantiation of these models to manage the intervention and implement e-health systems in developing countries. I applied the action research methodology and the approaches twin track, middle out and design thinking which allowed me the iterative refinement of the model proposed in this doctoral thesis. The proposed framework was validated by running two cases studies in rural areas of Central America: Jocotán (Guatemala) and San José de Cusmapa (Nicaragua). As a result, I obtained an experimental model based on four components: a Type reference model, an e-health conceptual model, both process management and implementation e-health systems in developing countries and a reference architecture. The resulting experimental model provides important tools for the deployment of e-health systems in developing countries. The model become as reference model that provides a holistic view of the developing countries context where the interventions will be running. The conceptual model of e-health represents the main concepts involved into an e-health system. The project management and implementation processes of the iv- system provide to the cooperation teams with tools for analysing, designing, developing and deploying e-health systems in rural areas from developing countries. Finally, the reference architecture provides the basis for the implementation of these processes into a particular context. The future research suggest the extension the model to other cases studies in order to refine and evaluate the viability the model.
Resumo:
The objective of this research was the implementation of a participatory process for the development of a tool to support decision making in water management. The process carried out aims at attaining an improved understanding of the water system and an encouragement of the exchange of knowledge and views between stakeholders to build a shared vision of the system. In addition, the process intends to identify impacts of possible solutions to given problems, which will help to take decisions.
Resumo:
Natural regeneration-based silviculture has been increasingly regarded as a reliable option in sustainable forest management. However, successful natural regeneration is not always easy to achieve. Recently, new concerns have arisen because of changing future climate. To date, regeneration models have proved helpful in decision-making concerning natural regeneration. The implementation of such models into optimization routines is a promising approach in providing forest managers with accurate tools for forest planning. In the present study, we present a stochastic multistage regeneration model for Pinus pinea L. managed woodlands in Central Spain, where regeneration has been historically unsuccessful. The model is able to quantify recruitment under different silviculture alternatives and varying climatic scenarios, with further application to optimize management scheduling. The regeneration process in the species showed high between-year variation, with all subprocesses (seed production, dispersal, germination, predation, and seedling survival) having the potential to become bottlenecks. However, model simulations demonstrate that current intensive management is responsible for regeneration failure in the long term. Specifically, stand densities at rotation age are too low to guarantee adequate dispersal, the optimal density of seed-producing trees being around 150 stems·ha−1. In addition, rotation length needs to be extended up to 120 years to benefit from the higher seed production of older trees. Stochastic optimization confirms these results. Regeneration does not appear to worsen under climate change conditions; the species exhibiting resilience worthy of broader consideration in Mediterranean silviculture.
Resumo:
A participatory modelling process has been conducted in two areas of the Guadiana river (the upper and the middle sub-basins), in Spain, with the aim of providing support for decision making in the water management field. The area has a semi-arid climate where irrigated agriculture plays a key role in the economic development of the region and accounts for around 90% of water use. Following the guidelines of the European Water Framework Directive, we promote stakeholder involvement in water management with the aim to achieve an improved understanding of the water system and to encourage the exchange of knowledge and views between stakeholders in order to help building a shared vision of the system. At the same time, the resulting models, which integrate the different sectors and views, provide some insight of the impacts that different management options and possible future scenarios could have. The methodology is based on a Bayesian network combined with an economic model and, in the middle Guadiana sub-basin, with a crop model. The resulting integrated modelling framework is used to simulate possible water policy, market and climate scenarios to find out the impacts of those scenarios on farm income and on the environment. At the end of the modelling process, an evaluation questionnaire was filled by participants in both sub-basins. Results show that this type of processes are found very helpful by stakeholders to improve the system understanding, to understand each others views and to reduce conflict when it exists. In addition, they found the model an extremely useful tool to support management. The graphical interface, the quantitative output and the explicit representation of uncertainty helped stakeholders to better understand the implications of the scenario tested. Finally, the combination of different types of models was also found very useful, as it allowed exploring in detail specific aspects of the water management problems.
Resumo:
In the SESAR Step 2 concept of operations a RBT is available and seen by all making it possible to conceive a different operating method than the current ATM system based on Collaborative Decisions Making processes. Currently there is a need to describe in more detail the mechanisms by which actors (ATC, Network Management, Flight Crew, airports and Airline Operation Centre) will negotiate revisions to the RBT. This paper introduces a negotiation model, which uses constraint based programing applied to a mediator to facilitate negotiation process in a SWIM enabled environment. Three processes for modelling the negotiation process are explained as well a preliminary reasoning agent algorithm modelled with constraint satisfaction problem is presented. Computational capability of the model is evaluated in the conclusion.
Resumo:
Due to the necessity to undertake activities, every year people increase their standards of travelling (distance and time). Urban sprawl development plays an important role in these "enlargements". Thus, governments invest money in an exhaustiva search for solutions to high levels of congestion and car-trips. The complex relationship between urban environment and travel behaviour has been studied in a number of cases. Thus, the objective of this paper is to answer the important question of which land-use attributes influence which dimensions of travel behaviour, and to verify to what extent specific urban planning measures affect the individual decision process, by exhaustiva statistical and systematic tests. This paper found that a crucial issue in the analysis of the relationship between the built environment and travel behaviour is the definition of indicators. As such, we recommend a feasible list of indicators to analyze this relationship.
Resumo:
Prediction at ungauged sites is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. Regression models relate physiographic and climatic basin characteristics to flood quantiles, which can be estimated from observed data at gauged sites. However, these models assume linear relationships between variables Prediction intervals are estimated by the variance of the residuals in the estimated model. Furthermore, the effect of the uncertainties in the explanatory variables on the dependent variable cannot be assessed. This paper presents a methodology to propagate the uncertainties that arise in the process of predicting flood quantiles at ungauged basins by a regression model. In addition, Bayesian networks were explored as a feasible tool for predicting flood quantiles at ungauged sites. Bayesian networks benefit from taking into account uncertainties thanks to their probabilistic nature. They are able to capture non-linear relationships between variables and they give a probability distribution of discharges as result. The methodology was applied to a case study in the Tagus basin in Spain.
Resumo:
La relación entre la estructura urbana y la movilidad ha sido estudiada desde hace más de 70 años. El entorno urbano incluye múltiples dimensiones como por ejemplo: la estructura urbana, los usos de suelo, la distribución de instalaciones diversas (comercios, escuelas y zonas de restauración, parking, etc.). Al realizar una revisión de la literatura existente en este contexto, se encuentran distintos análisis, metodologías, escalas geográficas y dimensiones, tanto de la movilidad como de la estructura urbana. En este sentido, se trata de una relación muy estudiada pero muy compleja, sobre la que no existe hasta el momento un consenso sobre qué dimensión del entorno urbano influye sobre qué dimensión de la movilidad, y cuál es la manera apropiada de representar esta relación. Con el propósito de contestar estas preguntas investigación, la presente tesis tiene los siguientes objetivos generales: (1) Contribuir al mejor entendimiento de la compleja relación estructura urbana y movilidad. y (2) Entender el rol de los atributos latentes en la relación entorno urbano y movilidad. El objetivo específico de la tesis es analizar la influencia del entorno urbano sobre dos dimensiones de la movilidad: número de viajes y tipo de tour. Vista la complejidad de la relación entorno urbano y movilidad, se pretende contribuir al mejor entendimiento de la relación a través de la utilización de 3 escalas geográficas de las variables y del análisis de la influencia de efectos inobservados en la movilidad. Para el análisis se utiliza una base de datos conformada por tres tipos de datos: (1) Una encuesta de movilidad realizada durante los años 2006 y 2007. Se obtuvo un total de 943 encuestas, en 3 barrios de Madrid: Chamberí, Pozuelo y Algete. (2) Información municipal del Instituto Nacional de Estadística: dicha información se encuentra enlazada con los orígenes y destinos de los viajes recogidos en la encuesta. Y (3) Información georeferenciada en Arc-GIS de los hogares participantes en la encuesta: la base de datos contiene información respecto a la estructura de las calles, localización de escuelas, parking, centros médicos y lugares de restauración. Se analizó la correlación entre e intra-grupos y se modelizaron 4 casos de atributos bajo la estructura ordinal logit. Posteriormente se evalúa la auto-selección a través de la estimación conjunta de las elecciones de tipo de barrio y número de viajes. La elección del tipo de barrio consta de 3 alternativas: CBD, Urban y Suburban, según la zona de residencia recogida en las encuestas. Mientras que la elección del número de viajes consta de 4 categorías ordinales: 0 viajes, 1-2 viajes, 3-4 viajes y 5 o más viajes. A partir de la mejor especificación del modelo ordinal logit. Se desarrolló un modelo joint mixed-ordinal conjunto. Los resultados indican que las variables exógenas requieren un análisis exhaustivo de correlaciones con el fin de evitar resultados sesgados. ha determinado que es importante medir los atributos del BE donde se realiza el viaje, pero también la información municipal es muy explicativa de la movilidad individual. Por tanto, la percepción de las zonas de destino a nivel municipal es considerada importante. En el contexto de la Auto-selección (self-selection) es importante modelizar conjuntamente las decisiones. La Auto-selección existe, puesto que los parámetros estimados conjuntamente son significativos. Sin embargo, sólo ciertos atributos del entorno urbano son igualmente importantes sobre la elección de la zona de residencia y frecuencia de viajes. Para analizar la Propensión al Viaje, se desarrolló un modelo híbrido, formado por: una variable latente, un indicador y un modelo de elección discreta. La variable latente se denomina “Propensión al Viaje”, cuyo indicador en ecuación de medida es el número de viajes; la elección discreta es el tipo de tour. El modelo de elección consiste en 5 alternativas, según la jerarquía de actividades establecida en la tesis: HOME, no realiza viajes durante el día de estudio, HWH tour cuya actividad principal es el trabajo o estudios, y no se realizan paradas intermedias; HWHs tour si el individuo reaiza paradas intermedias; HOH tour cuya actividad principal es distinta a trabajo y estudios, y no se realizan paradas intermedias; HOHs donde se realizan paradas intermedias. Para llegar a la mejor especificación del modelo, se realizó un trabajo importante considerando diferentes estructuras de modelos y tres tipos de estimaciones. De tal manera, se obtuvieron parámetros consistentes y eficientes. Los resultados muestran que la modelización de los tours, representa una ventaja sobre la modelización de los viajes, puesto que supera las limitaciones de espacio y tiempo, enlazando los viajes realizados por la misma persona en el día de estudio. La propensión al viaje (PT) existe y es específica para cada tipo de tour. Los parámetros estimados en el modelo híbrido resultaron significativos y distintos para cada alternativa de tipo de tour. Por último, en la tesis se verifica que los modelos híbridos representan una mejora sobre los modelos tradicionales de elección discreta, dando como resultado parámetros consistentes y más robustos. En cuanto a políticas de transporte, se ha demostrado que los atributos del entorno urbano son más importantes que los LOS (Level of Service) en la generación de tours multi-etapas. la presente tesis representa el primer análisis empírico de la relación entre los tipos de tours y la propensión al viaje. El concepto Propensity to Travel ha sido desarrollado exclusivamente para la tesis. Igualmente, el desarrollo de un modelo conjunto RC-Number of trips basado en tres escalas de medida representa innovación en cuanto a la comparación de las escalas geográficas, que no había sido hecha en la modelización de la self-selection. The relationship between built environment (BE) and travel behaviour (TB) has been studied in a number of cases, using several methods - aggregate and disaggregate approaches - and different focuses – trip frequency, automobile use, and vehicle miles travelled and so on. Definitely, travel is generated by the need to undertake activities and obtain services, and there is a general consensus that urban components affect TB. However researches are still needed to better understand which components of the travel behaviour are affected most and by which of the urban components. In order to fill the gap in the research, the present dissertation faced two main objectives: (1) To contribute to the better understanding of the relationship between travel demand and urban environment. And (2) To develop an econometric model for estimating travel demand with urban environment attributes. With this purpose, the present thesis faced an exhaustive research and computation of land-use variables in order to find the best representation of BE for modelling trip frequency. In particular two empirical analyses are carried out: 1. Estimation of three dimensions of travel demand using dimensions of urban environment. We compare different travel dimensions and geographical scales, and we measure self-selection contribution following the joint models. 2. Develop a hybrid model, integrated latent variable and discrete choice model. The implementation of hybrid models is new in the analysis of land-use and travel behaviour. BE and TB explicitly interact and allow richness information about a specific individual decision process For all empirical analysis is used a data-base from a survey conducted in 2006 and 2007 in Madrid. Spatial attributes describing neighbourhood environment are derived from different data sources: National Institute of Statistics-INE (Administrative: municipality and district) and GIS (circular units). INE provides raw data for such spatial units as: municipality and district. The construction of census units is trivial as the census bureau provides tables that readily define districts and municipalities. The construction of circular units requires us to determine the radius and associate the spatial information to our households. The first empirical part analyzes trip frequency by applying an ordered logit model. In this part is studied the effect of socio-economic, transport and land use characteristics on two travel dimensions: trip frequency and type of tour. In particular the land use is defined in terms of type of neighbourhoods and types of dwellers. Three neighbourhood representations are explored, and described three for constructing neighbourhood attributes. In particular administrative units are examined to represent neighbourhood and circular – unit representation. Ordered logit models are applied, while ordinal logit models are well-known, an intensive work for constructing a spatial attributes was carried out. On the other hand, the second empirical analysis consists of the development of an innovative econometric model that considers a latent variable called “propensity to travel”, and choice model is the choice of type of tour. The first two specifications of ordinal models help to estimate this latent variable. The latent variable is unobserved but the manifestation is called “indicators”, then the probability of choosing an alternative of tour is conditional to the probability of latent variable and type of tour. Since latent variable is unknown we fit the integral over its distribution. Four “sets of best variables” are specified, following the specification obtained from the correlation analysis. The results evidence that the relative importance of SE variables versus BE variables depends on how BE variables are measured. We found that each of these three spatial scales has its intangible qualities and drawbacks. Spatial scales play an important role on predicting travel demand due to the variability in measures at trip origin/destinations within the same administrative unit (municipality, district and so on). Larger units will produce less variation in data; but it does not affect certain variables, such as public transport supply, that are more significant at municipality level. By contrast, land-use measures are more efficient at district level. Self-selection in this context, is weak. Thus, the influence of BE attributes is true. The results of the hybrid model show that unobserved factors affect the choice of tour complexity. The latent variable used in this model is propensity to travel that is explained by socioeconomic aspects and neighbourhood attributes. The results show that neighbourhood attributes have indeed a significant impact on the choice of the type of tours either directly and through the propensity to travel. The propensity to travel has a different impact depending on the structure of each tour and increases the probability of choosing more complex tours, such as tours with many intermediate stops. The integration of choice and latent variable model shows that omitting important perception and attitudes leads to inconsistent estimates. The results also indicate that goodness of fit improves by adding the latent variable in both sequential and simultaneous estimation. There are significant differences in the sensitivity to the latent variable across alternatives. In general, as expected, the hybrid models show a major improvement into the goodness of fit of the model, compared to a classical discrete choice model that does not incorporate latent effects. The integrated model leads to a more detailed analysis of the behavioural process. Summarizing, the effect that built environment characteristics on trip frequency studied is deeply analyzed. In particular we tried to better understand how land use characteristics can be defined and measured and which of these measures do have really an impact on trip frequency. We also tried to test the superiority of HCM on this field. We can concluded that HCM shows a major improvement into the goodness of fit of the model, compared to classical discrete choice model that does not incorporate latent effects. And consequently, the application of HCM shows the importance of LV on the decision of tour complexity. People are more elastic to built environment attributes than level of services. Thus, policy implications must take place to develop more mixed areas, work-places in combination with commercial retails.
A Methodological model to assist the optimization and risk management of mining investment decisions
Resumo:
Identifying, quantifying, and minimizing technical risks associated with investment decisions is a key challenge for mineral industry decision makers and investors. However, risk analysis in most bankable mine feasibility studies are based on the stochastic modelling of project “Net Present Value” (NPV)which, in most cases, fails to provide decision makers with a truly comprehensive analysis of risks associated with technical and management uncertainty and, as a result, are of little use for risk management and project optimization. This paper presents a value-chain risk management approach where project risk is evaluated for each step of the project lifecycle, from exploration to mine closure, and risk management is performed as a part of a stepwise value-added optimization process.
Resumo:
This paper presents an analytical model for simulating the bond between steel and concrete, in precast prestressed concrete elements, during the prestressing force release. The model establishes a relationship between bond stress, steel and concrete stress and slip in such concrete structures. This relationship allows us to evaluate the bond stress in the transmission zone, where bond stress is not constant, along the whole prestressing force release process. The model is validated with the results of a series of tests and is extended to evaluate the transmission length. This capability has been checked by comparing the transmission length predicted by the model and one measured experimentally in a series of tests.
Resumo:
RESUMEN La dispersión del amoniaco (NH3) emitido por fuentes agrícolas en medias distancias, y su posterior deposición en el suelo y la vegetación, pueden llevar a la degradación de ecosistemas vulnerables y a la acidificación de los suelos. La deposición de NH3 suele ser mayor junto a la fuente emisora, por lo que los impactos negativos de dichas emisiones son generalmente mayores en esas zonas. Bajo la legislación comunitaria, varios estados miembros emplean modelos de dispersión inversa para estimar los impactos de las emisiones en las proximidades de las zonas naturales de especial conservación. Una revisión reciente de métodos para evaluar impactos de NH3 en distancias medias recomendaba la comparación de diferentes modelos para identificar diferencias importantes entre los métodos empleados por los distintos países de la UE. En base a esta recomendación, esta tesis doctoral compara y evalúa las predicciones de las concentraciones atmosféricas de NH3 de varios modelos bajo condiciones, tanto reales como hipotéticas, que plantean un potencial impacto sobre ecosistemas (incluidos aquellos bajo condiciones de clima Mediterráneo). En este sentido, se procedió además a la comparación y evaluación de varias técnicas de modelización inversa para inferir emisiones de NH3. Finalmente, se ha desarrollado un modelo matemático simple para calcular las concentraciones de NH3 y la velocidad de deposición de NH3 en ecosistemas vulnerables cercanos a una fuente emisora. La comparativa de modelos supuso la evaluación de cuatro modelos de dispersión (ADMS 4.1; AERMOD v07026; OPS-st v3.0.3 y LADD v2010) en un amplio rango de casos hipotéticos (dispersión de NH3 procedente de distintos tipos de fuentes agrícolas de emisión). La menor diferencia entre las concentraciones medias estimadas por los distintos modelos se obtuvo para escenarios simples. La convergencia entre las predicciones de los modelos fue mínima para el escenario relativo a la dispersión de NH3 procedente de un establo ventilado mecánicamente. En este caso, el modelo ADMS predijo concentraciones significativamente menores que los otros modelos. Una explicación de estas diferencias podríamos encontrarla en la interacción de diferentes “penachos” y “capas límite” durante el proceso de parametrización. Los cuatro modelos de dispersión fueron empleados para dos casos reales de dispersión de NH3: una granja de cerdos en Falster (Dinamarca) y otra en Carolina del Norte (EEUU). Las concentraciones medias anuales estimadas por los modelos fueron similares para el caso americano (emisión de granjas ventiladas de forma natural y balsa de purines). La comparación de las predicciones de los modelos con concentraciones medias anuales medidas in situ, así como la aplicación de los criterios establecidos para la aceptación estadística de los modelos, permitió concluir que los cuatro modelos se comportaron aceptablemente para este escenario. No ocurrió lo mismo en el caso danés (nave ventilada mecánicamente), en donde el modelo LADD no dio buenos resultados debido a la ausencia de procesos de “sobreelevacion de penacho” (plume-rise). Los modelos de dispersión dan a menudo pobres resultados en condiciones de baja velocidad de viento debido a que la teoría de dispersión en la que se basan no es aplicable en estas condiciones. En situaciones de frecuente descenso en la velocidad del viento, la actual guía de modelización propone usar un modelo que sea eficaz bajo dichas condiciones, máxime cuando se realice una valoración que tenga como objeto establecer una política de regularización. Esto puede no ser siempre posible debido a datos meteorológicos insuficientes, en cuyo caso la única opción sería utilizar un modelo más común, como la versión avanzada de los modelos Gausianos ADMS o AERMOD. Con el objetivo de evaluar la idoneidad de estos modelos para condiciones de bajas velocidades de viento, ambos modelos fueron utilizados en un caso con condiciones Mediterráneas. Lo que supone sucesivos periodos de baja velocidad del viento. El estudio se centró en la dispersión de NH3 procedente de una granja de cerdos en Segovia (España central). Para ello la concentración de NH3 media mensual fue medida en 21 localizaciones en torno a la granja. Se realizaron también medidas de concentración de alta resolución en una única localización durante una campaña de una semana. En este caso, se evaluaron dos estrategias para mejorar la respuesta del modelo ante bajas velocidades del viento. La primera se basó en “no zero wind” (NZW), que sustituyó periodos de calma con el mínimo límite de velocidad del viento y “accumulated calm emissions” (ACE), que forzaban al modelo a calcular las emisiones totales en un periodo de calma y la siguiente hora de no-calma. Debido a las importantes incertidumbres en los datos de entrada del modelo (inputs) (tasa de emisión de NH3, velocidad de salida de la fuente, parámetros de la capa límite, etc.), se utilizó el mismo caso para evaluar la incertidumbre en la predicción del modelo y valorar como dicha incertidumbre puede ser considerada en evaluaciones del modelo. Un modelo dinámico de emisión, modificado para el caso de clima Mediterráneo, fue empleado para estimar la variabilidad temporal en las emisiones de NH3. Así mismo, se realizó una comparativa utilizando las emisiones dinámicas y la tasa constante de emisión. La incertidumbre predicha asociada a la incertidumbre de los inputs fue de 67-98% del valor medio para el modelo ADMS y entre 53-83% del valor medio para AERMOD. La mayoría de esta incertidumbre se debió a la incertidumbre del ratio de emisión en la fuente (50%), seguida por la de las condiciones meteorológicas (10-20%) y aquella asociada a las velocidades de salida (5-10%). El modelo AERMOD predijo mayores concentraciones que ADMS y existieron más simulaciones que alcanzaron los criterios de aceptabilidad cuando se compararon las predicciones con las concentraciones medias anuales medidas. Sin embargo, las predicciones del modelo ADMS se correlacionaron espacialmente mejor con las mediciones. El uso de valores dinámicos de emisión estimados mejoró el comportamiento de ADMS, haciendo empeorar el de AERMOD. La aplicación de estrategias destinadas a mejorar el comportamiento de este último tuvo efectos contradictorios similares. Con el objeto de comparar distintas técnicas de modelización inversa, varios modelos (ADMS, LADD y WindTrax) fueron empleados para un caso no agrícola, una colonia de pingüinos en la Antártida. Este caso fue empleado para el estudio debido a que suponía la oportunidad de obtener el primer factor de emisión experimental para una colonia de pingüinos antárticos. Además las condiciones eran propicias desde el punto de vista de la casi total ausencia de concentraciones ambiente (background). Tras el trabajo de modelización existió una concordancia suficiente entre las estimaciones obtenidas por los tres modelos. De este modo se pudo definir un factor de emisión de para la colonia de 1.23 g NH3 por pareja criadora por día (con un rango de incertidumbre de 0.8-2.54 g NH3 por pareja criadora por día). Posteriores aplicaciones de técnicas de modelización inversa para casos agrícolas mostraron también un buen compromiso estadístico entre las emisiones estimadas por los distintos modelos. Con todo ello, es posible concluir que la modelización inversa es una técnica robusta para estimar tasas de emisión de NH3. Modelos de selección (screening) permiten obtener una rápida y aproximada estimación de los impactos medioambientales, siendo una herramienta útil para evaluaciones de impactos en tanto que permite eliminar casos que presentan un riesgo potencial de daño bajo. De esta forma, lo recursos del modelo pueden Resumen (Castellano) destinarse a casos en donde la posibilidad de daño es mayor. El modelo de Cálculo Simple de los Límites de Impacto de Amoniaco (SCAIL) se desarrolló para obtener una estimación de la concentración media de NH3 y de la tasa de deposición seca asociadas a una fuente agrícola. Está técnica de selección, basada en el modelo LADD, fue evaluada y calibrada con diferentes bases de datos y, finalmente, validada utilizando medidas independientes de concentraciones realizadas cerca de las fuentes. En general SCAIL dio buenos resultados de acuerdo a los criterios estadísticos establecidos. Este trabajo ha permitido definir situaciones en las que las concentraciones predichas por modelos de dispersión son similares, frente a otras en las que las predicciones difieren notablemente entre modelos. Algunos modelos nos están diseñados para simular determinados escenarios en tanto que no incluyen procesos relevantes o están más allá de los límites de su aplicabilidad. Un ejemplo es el modelo LADD que no es aplicable en fuentes con velocidad de salida significativa debido a que no incluye una parametrización de sobreelevacion del penacho. La evaluación de un esquema simple combinando la sobreelevacion del penacho y una turbulencia aumentada en la fuente mejoró el comportamiento del modelo. Sin embargo más pruebas son necesarias para avanzar en este sentido. Incluso modelos que son aplicables y que incluyen los procesos relevantes no siempre dan similares predicciones. Siendo las razones de esto aún desconocidas. Por ejemplo, AERMOD predice mayores concentraciones que ADMS para dispersión de NH3 procedente de naves de ganado ventiladas mecánicamente. Existe evidencia que sugiere que el modelo ADMS infraestima concentraciones en estas situaciones debido a un elevado límite de velocidad de viento. Por el contrario, existen evidencias de que AERMOD sobreestima concentraciones debido a sobreestimaciones a bajas Resumen (Castellano) velocidades de viento. Sin embrago, una modificación simple del pre-procesador meteorológico parece mejorar notablemente el comportamiento del modelo. Es de gran importancia que estas diferencias entre las predicciones de los modelos sean consideradas en los procesos de evaluación regulada por los organismos competentes. Esto puede ser realizado mediante la aplicación del modelo más útil para cada caso o, mejor aún, mediante modelos múltiples o híbridos. ABSTRACT Short-range atmospheric dispersion of ammonia (NH3) emitted by agricultural sources and its subsequent deposition to soil and vegetation can lead to the degradation of sensitive ecosystems and acidification of the soil. Atmospheric concentrations and dry deposition rates of NH3 are generally highest near the emission source and so environmental impacts to sensitive ecosystems are often largest at these locations. Under European legislation, several member states use short-range atmospheric dispersion models to estimate the impact of ammonia emissions on nearby designated nature conservation sites. A recent review of assessment methods for short-range impacts of NH3 recommended an intercomparison of the different models to identify whether there are notable differences to the assessment approaches used in different European countries. Based on this recommendation, this thesis compares and evaluates the atmospheric concentration predictions of several models used in these impact assessments for various real and hypothetical scenarios, including Mediterranean meteorological conditions. In addition, various inverse dispersion modelling techniques for the estimation of NH3 emissions rates are also compared and evaluated and a simple screening model to calculate the NH3 concentration and dry deposition rate at a sensitive ecosystem located close to an NH3 source was developed. The model intercomparison evaluated four atmospheric dispersion models (ADMS 4.1; AERMOD v07026; OPS-st v3.0.3 and LADD v2010) for a range of hypothetical case studies representing the atmospheric dispersion from several agricultural NH3 source types. The best agreement between the mean annual concentration predictions of the models was found for simple scenarios with area and volume sources. The agreement between the predictions of the models was worst for the scenario representing the dispersion from a mechanically ventilated livestock house, for which ADMS predicted significantly smaller concentrations than the other models. The reason for these differences appears to be due to the interaction of different plume-rise and boundary layer parameterisations. All four dispersion models were applied to two real case studies of dispersion of NH3 from pig farms in Falster (Denmark) and North Carolina (USA). The mean annual concentration predictions of the models were similar for the USA case study (emissions from naturally ventilated pig houses and a slurry lagoon). The comparison of model predictions with mean annual measured concentrations and the application of established statistical model acceptability criteria concluded that all four models performed acceptably for this case study. This was not the case for the Danish case study (mechanically ventilated pig house) for which the LADD model did not perform acceptably due to the lack of plume-rise processes in the model. Regulatory dispersion models often perform poorly in low wind speed conditions due to the model dispersion theory being inapplicable at low wind speeds. For situations with frequent low wind speed periods, current modelling guidance for regulatory assessments is to use a model that can handle these conditions in an acceptable way. This may not always be possible due to insufficient meteorological data and so the only option may be to carry out the assessment using a more common regulatory model, such as the advanced Gaussian models ADMS or AERMOD. In order to assess the suitability of these models for low wind conditions, they were applied to a Mediterranean case study that included many periods of low wind speed. The case study was the dispersion of NH3 emitted by a pig farm in Segovia, Central Spain, for which mean monthly atmospheric NH3 concentration measurements were made at 21 locations surrounding the farm as well as high-temporal-resolution concentration measurements at one location during a one-week campaign. Two strategies to improve the model performance for low wind speed conditions were tested. These were ‘no zero wind’ (NZW), which replaced calm periods with the minimum threshold wind speed of the model and ‘accumulated calm emissions’ (ACE), which forced the model to emit the total emissions during a calm period during the first subsequent non-calm hour. Due to large uncertainties in the model input data (NH3 emission rates, source exit velocities, boundary layer parameters), the case study was also used to assess model prediction uncertainty and assess how this uncertainty can be taken into account in model evaluations. A dynamic emission model modified for the Mediterranean climate was used to estimate the temporal variability in NH3 emission rates and a comparison was made between the simulations using the dynamic emissions and a constant emission rate. Prediction uncertainty due to model input uncertainty was 67-98% of the mean value for ADMS and between 53-83% of the mean value for AERMOD. Most of this uncertainty was due to source emission rate uncertainty (~50%), followed by uncertainty in the meteorological conditions (~10-20%) and uncertainty in exit velocities (~5-10%). AERMOD predicted higher concentrations than ADMS and more of the simulations met the model acceptability criteria when compared with the annual mean measured concentrations. However, the ADMS predictions were better correlated spatially with the measurements. The use of dynamic emission estimates improved the performance of ADMS but worsened the performance of AERMOD and the application of strategies to improved model performance had similar contradictory effects. In order to compare different inverse modelling techniques, several models (ADMS, LADD and WindTrax) were applied to a non-agricultural case study of a penguin colony in Antarctica. This case study was used since it gave the opportunity to provide the first experimentally-derived emission factor for an Antarctic penguin colony and also had the advantage of negligible background concentrations. There was sufficient agreement between the emission estimates obtained from the three models to define an emission factor for the penguin colony (1.23 g NH3 per breeding pair per day with an uncertainty range of 0.8-2.54 g NH3 per breeding pair per day). This emission estimate compared favourably to the value obtained using a simple micrometeorological technique (aerodynamic gradient) of 0.98 g ammonia per breeding pair per day (95% confidence interval: 0.2-2.4 g ammonia per breeding pair per day). Further application of the inverse modelling techniques for a range of agricultural case studies also demonstrated good agreement between the emission estimates. It is concluded, therefore, that inverse dispersion modelling is a robust technique for estimating NH3 emission rates. Screening models that can provide a quick and approximate estimate of environmental impacts are a useful tool for impact assessments because they can be used to filter out cases that potentially have a minimal environmental impact allowing resources to be focussed on more potentially damaging cases. The Simple Calculation of Ammonia Impact Limits (SCAIL) model was developed as a screening model to provide an estimate of the mean NH3 concentration and dry deposition rate downwind of an agricultural source. This screening tool, based on the LADD model, was evaluated and calibrated with several experimental datasets and then validated using independent concentration measurements made near sources. Overall SCAIL performed acceptably according to established statistical criteria. This work has identified situations where the concentration predictions of dispersion models are similar and other situations where the predictions are significantly different. Some models are simply not designed to simulate certain scenarios since they do not include the relevant processes or are beyond the limits of their applicability. An example is the LADD model that is not applicable to sources with significant exit velocity since the model does not include a plume-rise parameterisation. The testing of a simple scheme combining a momentum-driven plume rise and increased turbulence at the source improved model performance, but more testing is required. Even models that are applicable and include the relevant process do not always give similar predictions and the reasons for this need to be investigated. AERMOD for example predicts higher concentrations than ADMS for dispersion from mechanically ventilated livestock housing. There is evidence to suggest that ADMS underestimates concentrations in these situations due to a high wind speed threshold. Conversely, there is also evidence that AERMOD overestimates concentrations in these situations due to overestimation at low wind speeds. However, a simple modification to the meteorological pre-processor appears to improve the performance of the model. It is important that these differences between the predictions of these models are taken into account in regulatory assessments. This can be done by applying the most suitable model for the assessment in question or, better still, using multiple or hybrid models.
Resumo:
A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.