6 resultados para Probability Weight : Rank-dependent Utility
em Universidad Politécnica de Madrid
Resumo:
We propose a new method for ranking alternatives in multicriteria decision-making problems when there is imprecision concerning the alternative performances, component utility functions and weights. We assume decision maker?s preferences are represented by an additive multiattribute utility function, in which weights can be modeled by independent normal variables, fuzzy numbers, value intervals or by an ordinal relation. The approaches are based on dominance measures or exploring the weight space in order to describe which ratings would make each alternative the preferred one. On the one hand, the approaches based on dominance measures compute the minimum utility difference among pairs of alternatives. Then, they compute a measure by which to rank the alternatives. On the other hand, the approaches based on exploring the weight space compute confidence factors describing the reliability of the analysis. These methods are compared using Monte Carlo simulation.
Resumo:
We introduce a dominance intensity measuring method to derive a ranking of alternatives to deal with incomplete information in multi-criteria decision-making problems on the basis of multi-attribute utility theory (MAUT) and fuzzy sets theory. We consider the situation where there is imprecision concerning decision-makers’ preferences, and imprecise weights are represented by trapezoidal fuzzy weights.The proposed method is based on the dominance values between pairs of alternatives. These values can be computed by linear programming, as an additive multi-attribute utility model is used to rate the alternatives. Dominance values are then transformed into dominance intensity measures, used to rank the alternatives under consideration. Distances between fuzzy numbers based on the generalization of the left and right fuzzy numbers are utilized to account for fuzzy weights. An example concerning the selection of intervention strategies to restore an aquatic ecosystem contaminated by radionuclides illustrates the approach. Monte Carlo simulation techniques have been used to show that the proposed method performs well for different imprecision levels in terms of a hit ratio and a rank-order correlation measure.
Resumo:
In multi-attribute utility theory, it is often not easy to elicit precise values for the scaling weights representing the relative importance of criteria. A very widespread approach is to gather incomplete information. A recent approach for dealing with such situations is to use information about each alternative?s intensity of dominance, known as dominance measuring methods. Different dominancemeasuring methods have been proposed, and simulation studies have been carried out to compare these methods with each other and with other approaches but only when ordinal information about weights is available. In this paper, we useMonte Carlo simulation techniques to analyse the performance of and adapt such methods to deal with weight intervals, weights fitting independent normal probability distributions orweights represented by fuzzy numbers.Moreover, dominance measuringmethod performance is also compared with a widely used methodology dealing with incomplete information on weights, the stochastic multicriteria acceptability analysis (SMAA). SMAA is based on exploring the weight space to describe the evaluations that would make each alternative the preferred one.
Resumo:
La planificación de la movilidad sostenible urbana es una tarea compleja que implica un alto grado de incertidumbre debido al horizonte de planificación a largo plazo, la amplia gama de paquetes de políticas posibles, la necesidad de una aplicación efectiva y eficiente, la gran escala geográfica, la necesidad de considerar objetivos económicos, sociales y ambientales, y la respuesta del viajero a los diferentes cursos de acción y su aceptabilidad política (Shiftan et al., 2003). Además, con las tendencias inevitables en motorización y urbanización, la demanda de terrenos y recursos de movilidad en las ciudades está aumentando dramáticamente. Como consecuencia de ello, los problemas de congestión de tráfico, deterioro ambiental, contaminación del aire, consumo de energía, desigualdades en la comunidad, etc. se hacen más y más críticos para la sociedad. Esta situación no es estable a largo plazo. Para enfrentarse a estos desafíos y conseguir un desarrollo sostenible, es necesario considerar una estrategia de planificación urbana a largo plazo, que aborde las necesarias implicaciones potencialmente importantes. Esta tesis contribuye a las herramientas de evaluación a largo plazo de la movilidad urbana estableciendo una metodología innovadora para el análisis y optimización de dos tipos de medidas de gestión de la demanda del transporte (TDM). La metodología nueva realizado se basa en la flexibilización de la toma de decisiones basadas en utilidad, integrando diversos mecanismos de decisión contrariedad‐anticipada y combinados utilidad‐contrariedad en un marco integral de planificación del transporte. La metodología propuesta incluye dos aspectos principales: 1) La construcción de escenarios con una o varias medidas TDM usando el método de encuesta que incorpora la teoría “regret”. La construcción de escenarios para este trabajo se hace para considerar específicamente la implementación de cada medida TDM en el marco temporal y marco espacial. Al final, se construyen 13 escenarios TDM en términos del más deseable, el más posible y el de menor grado de “regret” como resultado de una encuesta en dos rondas a expertos en el tema. 2) A continuación se procede al desarrollo de un marco de evaluación estratégica, basado en un Análisis Multicriterio de Toma de Decisiones (Multicriteria Decision Analysis, MCDA) y en un modelo “regret”. Este marco de evaluación se utiliza para comparar la contribución de los distintos escenarios TDM a la movilidad sostenible y para determinar el mejor escenario utilizando no sólo el valor objetivo de utilidad objetivo obtenido en el análisis orientado a utilidad MCDA, sino también el valor de “regret” que se calcula por medio del modelo “regret” MCDA. La función objetivo del MCDA se integra en un modelo de interacción de uso del suelo y transporte que se usa para optimizar y evaluar los impactos a largo plazo de los escenarios TDM previamente construidos. Un modelo de “regret”, llamado “referencedependent regret model (RDRM)” (modelo de contrariedad dependiente de referencias), se ha adaptado para analizar la contribución de cada escenario TDM desde un punto de vista subjetivo. La validación de la metodología se realiza mediante su aplicación a un caso de estudio en la provincia de Madrid. La metodología propuesta define pues un procedimiento técnico detallado para la evaluación de los impactos estratégicos de la aplicación de medidas de gestión de la demanda en el transporte, que se considera que constituye una herramienta de planificación útil, transparente y flexible, tanto para los planificadores como para los responsables de la gestión del transporte. Planning sustainable urban mobility is a complex task involving a high degree of uncertainty due to the long‐term planning horizon, the wide spectrum of potential policy packages, the need for effective and efficient implementation, the large geographical scale, the necessity to consider economic, social, and environmental goals, and the traveller’s response to the various action courses and their political acceptability (Shiftan et al., 2003). Moreover, with the inevitable trends on motorisation and urbanisation, the demand for land and mobility in cities is growing dramatically. Consequently, the problems of traffic congestion, environmental deterioration, air pollution, energy consumption, and community inequity etc., are becoming more and more critical for the society (EU, 2011). Certainly, this course is not sustainable in the long term. To address this challenge and achieve sustainable development, a long‐term perspective strategic urban plan, with its potentially important implications, should be established. This thesis contributes on assessing long‐term urban mobility by establishing an innovative methodology for optimizing and evaluating two types of transport demand management measures (TDM). The new methodology aims at relaxing the utility‐based decision‐making assumption by embedding anticipated‐regret and combined utilityregret decision mechanisms in an integrated transport planning framework. The proposed methodology includes two major aspects: 1) Construction of policy scenarios within a single measure or combined TDM policy‐packages using the survey method incorporating the regret theory. The purpose of building the TDM scenarios in this work is to address the specific implementation in terms of time frame and geographic scale for each TDM measure. Finally, 13 TDM scenarios are built in terms of the most desirable, the most expected and the least regret choice by means of the two‐round Delphi based survey. 2) Development of the combined utility‐regret analysis framework based on multicriteria decision analysis (MCDA). This assessment framework is used to compare the contribution of the TDM scenario towards sustainable mobility and to determine the best scenario considering not only the objective utility value obtained from the utilitybased MCDA, but also a regret value that is calculated via a regret‐based MCDA. The objective function of the utility‐based MCDA is integrated in a land use and transport interaction model and is used for optimizing and assessing the long term impacts of the constructed TDM scenarios. A regret based model, called referente dependent regret model (RDRM) is adapted to analyse the contribution of each TDM scenario in terms of a subjective point of view. The suggested methodology is implemented and validated in the case of Madrid. It defines a comprehensive technical procedure for assessing strategic effects of transport demand management measures, which can be useful, transparent and flexible planning tool both for planners and decision‐makers.
Resumo:
The analysis addresses the issue of transport equity and explores three different approaches to equity in transport: utilitarianism, sufficientarianism and prioritarianism. Each approach calls for a different treatment of the benefits reaped by different population groups in the assessment of transport investments or policies. In utilitarianism, which underlies much of the current practice of transport project appraisal, all benefits receive the same weight, irrespective of the recipient of the benefits. In both sufficientarianism and prioritarianism, benefits are weighed in distinct ways, depending on the characteristics of the recipients. The three approaches are illustrated using a fictive case study, in which three different transport investment are assessed and compared to each other. Finally, the assessment of transport investments will be explored using the cost-effectiveness analysis (CEA). The CEA assesses the distributional effects of transport investments for utilitarism, sufficientarism and prioritarism approaches and addresses distinct needs associated with different population groups in respect to their transport
Resumo:
We consider the situation where there are several alternatives for investing a quantity of money to achieve a set of objectives. The choice of which alternative to apply depends on how citizens and political representatives perceive that such objectives should be achieved. All citizens with the right to vote can express their preferences in the decision-making process. These preferences may be incomplete. Political representatives represent the citizens who have not taken part in the decision-making process. The weight corresponding to political representatives depends on the number of citizens that have intervened in the decision-making process. The methodology we propose needs the participants to specify for each alternative how they rate the different attributes and the relative importance of attributes. On the basis of this information an expected utility interval is output for each alternative. To do this, an evidential reasoning approach is applied. This approach improves the insightfulness and rationality of the decision-making process using a belief decision matrix for problem modeling and the Dempster?Shafer theory of evidence for attribute aggregation. Finally, we propose using the distances of each expected utility interval from the maximum and the minimum utilities to rank the alternative set. The basic idea is that an alternative is ranked first if its distance to the maximum utility is the smallest, and its distance to the minimum utility is the greatest. If only one of these conditions is satisfied, a distance ratio is then used.