23 resultados para Prewarming of skin surface

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a novel method to enhance current airport surveillance systems used in Advanced Surveillance Monitoring Guidance and Control Systems (A-SMGCS). The proposed method allows for the automatic calibration of measurement models and enhanced detection of nonideal situations, increasing surveillance products integrity. It is based on the definition of a set of observables from the surveillance processing chain and a rule based expert system aimed to change the data processing methods

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InGaAs quantum dots show unique physical properties such as three dimensional confinement, high size homogeneity, high density and low number of dislocations. They have been extensively used in the active regions of laser devices for optical communications applications [1]. Therefore, buried quantum dots (BQDs) embedded in wider band gap materials have been normally studied. The wave confinement in all directions and the stress field around the dot affect both optical and electrical properties [2, 3]. However, surface quantum dots (SQDs) are less affected by stress, although their optical and electrical characteristics have a strong dependence on surface fluctuation. Thus, they can play an important role in sensor applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erosion potential and the effects of tillage can be evaluated from quantitative descriptions of soil surface roughness. The present study therefore aimed to fill the need for a reliable, low-cost and convenient method to measure that parameter. Based on the interpretation of micro-topographic shadows, this new procedure is primarily designed for use in the field after tillage. The principle underlying shadow analysis is the direct relationship between soil surface roughness and the shadows cast by soil structures under fixed sunlight conditions. The results obtained with this method were compared to the statistical indexes used to interpret field readings recorded by a pin meter. The tests were conducted on 4-m2 sandy loam and sandy clay loam plots divided into 1-m2 subplots tilled with three different tools: chisel, tiller and roller. The highly significant correlation between the statistical indexes and shadow analysis results obtained in the laboratory as well as in the field for all the soil?tool combinations proved that both variability (CV) and dispersion (SD) are accommodated by the new method. This procedure simplifies the interpretation of soil surface roughness and shortens the time involved in field operations by a factor ranging from 12 to 20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface state of Ge epi-ready wafers (such as those used on III-V multijunction solar cells) supplied by two different vendors has been studied using X-ray photoemission spectroscopy. Our experimental results show that the oxide layer on the wafer surface is formed by GeO and GeO2. This oxide layer thickness differs among wafers coming from different suppliers. Besides, several contaminants appear on the wafer surfaces, carbon and probably chlorine being common to every wafer, irrespective of its origin. Wafers from one of the vendors show the presence of carbonates at their surfaces. On such wafers, traces of potassium seem to be present too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skin properties have an important influence on impact parameters and bruising. Skin deformation at puncture (a measure of the turgidity of the fruit skin) is negatively correlated with bruise volume in Golden apples after cold storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The implementation of photovoltaic solar energy based on silicon is being slowed down by the shortage of raw material. In this context, the use of thinner wafers arises as a solution reducing the amount of silicon in the photovoltaic modules. On the other hand, the manufacturing process with thinner wafers can become complicated with traditional tools. The high number of damaged wafers reduces the global yield. It’s known that edge and surface cracks and defects determine the mechanical strength of wafers. There are several ways of removing these defects e. g. subjecting wafers to a mechanical polishing or to a chemical etching. This paper shows a comparison between different surface treatments and their influence on the mechanical strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the external costs of surface freight transport in Spain and finds that a reduction occurred over the past 15 years. The analysis yields two conclusions: trucks have experienced a reduction in external costs, and rail has lower externalities. The external costs of road freight transport decrease between 1993 and 2007 (44%). The external costs of rail freight increase by 12%. During this period, the external costs of road freight related to climate increase by 16%, oppositely than those from air pollution and accidents (51 and 44%). The external costs of rail related to pollutant emissions and climate increase by 4% and 43%. Oppositely, the external costs related to accidents decrease by 27%. Road freight generates eight times the external costs of rail, 2.35 Euro cents per tonne kilometre in 2005 (5.6% accidents, 74.7% air pollution and 19.7% climate) vs. 0.28 (13.4% accidents, 53.9% air pollution and 32.7% climate).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technical improvement and new applications of Infrared Thermography (IRT) with healthy subjects should be accompanied by results about the reproducibility of IRT measurements in different popula-tion groups. In addition, there is a remarkable necessity of a larger supply on software to analyze IRT images of human beings. Therefore, the objectives of this study were: firstly, to investigate the reproducibility of skin temperature (Tsk) on overweight and obese subjects using IRT in different Regions of Interest (ROI), moments and side-to-side differences (?T); and secondly, to check the reliability of a new software called Termotracker®, specialized on the analysis of IRT images of human beings. Methods: 22 overweight and obese males (11) and females (11) (age: 41,51±7,76 years; height: 1,65±0,09 m; weight: 82,41±11,81 Kg; BMI: 30,17±2,58 kg/m²) were assessed in two consecutive thermograms (5 seconds in-between) by the same observer, using an infrared camera (FLIR T335, Sweden) to get 4 IRT images from the whole body. 11 ROI were selected using Termotracker® to analyze its reproducibility and reliability through Intra-class Correlation Coefficient (ICC) and Coefficient of Variation (CV) values. Results: The reproducibility of the side-to-side differences (?T) between two consecutive thermograms was very high in all ROIs (Mean ICC = 0,989), and excellent between two computers (Mean ICC = 0,998). The re-liability of the software was very high in all the ROIs (Mean ICC = 0,999). Intraexaminer reliability analysing the same subjects in two consecutive thermograms was also very high (Mean ICC = 0,997). CV values of the different ROIs were around 2%. Conclusions: Skin temperature on overweight subjects had an excellent reproducibility for consecutive ther-mograms. The reproducibility of thermal asymmetries (?T) was also good but it had the influence of several factors that should be further investigated. Termotracker® reached excellent reliability results and it is a relia-ble and objective software to analyse IRT images of humans beings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed analysis of the impact of illumination on the electrical response of In0.5Ga0.5As surface nanostructures is carried out as a function of different relative humidity conditions. The importance of the surface-to-volume ratio for sensing applications is once more highlighted. From dark-to-photo conditions, the sheet resistance (SR) of a three-dimensional In0.5Ga0.5As nanostructure decays two orders of magnitude compared with that of a two-dimensional nanostructure. The electrical response is found to be vulnerable to the energy of the incident light and the external conditions. Illuminating with high energy light translates into an SR reduction of one order of magnitude under humid atmospheres, whereas it remains nearly unchanged under dry environments. Conversely, lighting with energy below the bulk energy bandgap, shows a negligible effect on the electrical properties regardless the local moisture. Both illumination and humidity are therefore needed for sensing. Photoexcited carriers can only contribute to conductivity if surface states are inactive due to water physisorption. The strong dependence of the electrical response on the environment makes these nanostructures very suitable for the development of highly sensitive and efficient sensing devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper the influence of the reference system with regard to the characterization of the surface finishing is analyzed. The effect of the reference system’s choice on the most representative surface finishing parameters (e.g. roughness average Ra and root mean square values Rq) is studied. The study can also be applied to their equivalent parameters in waviness and primary profiles. Based on ISO and ASME standards, three different types of regression lines (central, mean and orthogonal) are theoretically and experimentally analyzed, identifying the validity and applicability fields of each one depending on profile’s geometry. El presente trabajo realiza un estudio de la influencia que supone la elección del sistema de referencia en la determinación los valores de los parámetros más relevantes empleados en la caracterización del acabado superficial tales como la rugosidad media aritmética Ra o la rugosidad media cuadrática Rq y sus equivalentes en los perfiles de ondulación y completo. Partiendo de la definición establecida por las normas ISO y ASME, se analizan tres tipos de líneas de regresión cuadrática (línea central, línea media y línea ortogonal), delimitando los campos de validez y de aplicación de cada una de ellas en función de la geometría del perfil. Para ello se plantean diversos tipos de perfiles y se desarrolla un estudio teórico y experimental de los mismos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal response of skin temperature (Tsk) has been studied during exercise and immediately after (Merla, 2010). However, more studies about the influence of exercise on Tsk through the time are required to understand the impact of physical activity on thermoregulatory system and metabolism

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.