5 resultados para Pressure fields

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a new method, oriented to crop row detection in images from maize fields with high weed pressure. The vision system is designed to be installed onboard a mobile agricultural vehicle, i.e. submitted to gyros, vibrations and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of three main processes: image segmentation, double thresholding, based on the Otsu’s method, and crop row detection. Image segmentation is based on the application of a vegetation index, the double thresholding achieves the separation between weeds and crops and the crop row detection applies least squares linear regression for line adjustment. Crop and weed separation becomes effective and the crop row detection can be favorably compared against the classical approach based on the Hough transform. Both gain effectiveness and accuracy thanks to the double thresholding that makes the main finding of the paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser ionization of mixtures of gases at atmospheric pressure and the subsequent transport through electrostatic field is studied. A prototype is designed to perform the transport and detection of the ions. Relevance of the composition of the mixture of gases and ionization parameters is shown

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study shows the air flow behavior through the geometry of a freight truck inside a AF6109 wind tunnel with the purpose to predict the speed, pressure and turbulence fields made by the air flow, to decrease the aerodynamic resistance, to calculate the dragging coefficient, to evaluate the aerodynamics of the geometry of the prototype using the CFD technique and to compare the results of the simulation with the results obtained experimentally with the “PETER 739 HAULER” scaled freight truck model located on the floor of the test chamber. The Geometry went through a numerical simulation process using the CFX 5,7. The obtained results showed the behavior of the air flow through the test chamber, and also it showed the variations of speed and pressure at the exit of the chamber and the calculations of the coefficient and the dragging force on the geometry of the freight truck. The evaluation of the aerodynamics showed that the aerodynamic deflector is a device that helped the reduction the dragging produced in a significant way by the air. Furthermore, the dragging coefficient and force on the prototype freight truck could be estimated establishing an incomplete similarity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure –sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems and their management possibilities. The work includes all processes involved from the diversion of water into irrigation specific infrastructure to water discharge by the emitters installed on the crop fields. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. It has been applied to extensive and intensive crop systems, such us extensive winter crops, summer crops and olive trees, fruit trees and vineyards and intensive horticulture in greenhouses. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of a gas-filled microbubble encapsulated by a viscoelastic fluid shell immersed in a Newtonian liquid and subject to an external pressure field is theoretically studied. The problem is formulated by considering a nonlinear Oldroyd type constitutive equation to model the rheological behavior of the fluid shell. Heat and mass transfer across the surface bubble have been neglected but radiation losses due to the compressibility of the surrounding liquid have been taken into account. Bubble collapse under sudden increase of the external pressure as well as nonlinear radial oscillations under ultrasound fields are investigated. The numerical results obtained show that the elasticity of the fluid coating intensifies oscillatory collapse and produces a strong increase of the amplitudes of radial oscillations which may become chaotic even for moderate driving pressure amplitudes. The role played by the elongational viscosity has also been analyzed and its influence on both, bubble collapse and radial oscillations, has been recognized. According to the theoretical predictions provided in the present work, a microbubble coated by a viscoelastic fluid shell is an oscillating system that, under acoustic driving, may experience volume oscillations of large amplitude, being, however, more stable than a free bubble. Thus, it could be expected that such a system may have a suitable behavior as an echogenic agent.