2 resultados para Preneoplastic and neoplastic lesions

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of patients with temporal lobe epilepsy provide few descriptions of seizures that arise in the temporopolar and the anterior temporobasal brain region. Based on connectivity, it might be assumed that the semiology of these seizures is similar to that of medial temporal lobe epilepsy. However, accumulating evidence suggests that the anterior temporobasal cortex may play an important role in the language system, which could account for particular features of seizures arising here. We studied the electroclinical features of seizures in patients with circumscribed temporopolar and temporobasal lesions in order to identify specific features that might differentiate them from seizures that originate in other temporal areas. Among 172 patients with temporal lobe seizures registered in our epilepsy unit in the last 15 years, 15 (8.7%) patients had seizures caused by temporopolar or anterior temporobasal lesions (11 left-sided lesions). The main finding in our study is that patients with left-sided lesions had aphasia during their seizures as the most prominent feature. In addition, while all patients showed normal to high intellectual functioning in standard neuropsychological testing, semantic impairment was found in a subset of 9 patients with left-sided lesions. This case series demonstrates that aphasic seizures without impairment of consciousness can result from small, circumscribed left anterior temporobasal and temporopolar lesions. Thus, the presence of speech manifestation during seizures should prompt detailed assessment of the structural integrity of the basal surface of the temporal lobe in addition to the evaluation of primary language areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.