8 resultados para Predictive Mean Squared Efficiency
em Universidad Politécnica de Madrid
Resumo:
The purpose of this study was to compare a number of state-of-the-art methods in airborne laser scan- ning (ALS) remote sensing with regards to their capacity to describe tree size inequality and other indi- cators related to forest structure. The indicators chosen were based on the analysis of the Lorenz curve: Gini coefficient ( GC ), Lorenz asymmetry ( LA ), the proportions of basal area ( BALM ) and stem density ( NSLM ) stocked above the mean quadratic diameter. Each method belonged to one of these estimation strategies: (A) estimating indicators directly; (B) estimating the whole Lorenz curve; or (C) estimating a complete tree list. Across these strategies, the most popular statistical methods for area-based approach (ABA) were used: regression, random forest (RF), and nearest neighbour imputation. The latter included distance metrics based on either RF (NN–RF) or most similar neighbour (MSN). In the case of tree list esti- mation, methods based on individual tree detection (ITD) and semi-ITD, both combined with MSN impu- tation, were also studied. The most accurate method was direct estimation by best subset regression, which obtained the lowest cross-validated coefficients of variation of their root mean squared error CV(RMSE) for most indicators: GC (16.80%), LA (8.76%), BALM (8.80%) and NSLM (14.60%). Similar figures [CV(RMSE) 16.09%, 10.49%, 10.93% and 14.07%, respectively] were obtained by MSN imputation of tree lists by ABA, a method that also showed a number of additional advantages, such as better distributing the residual variance along the predictive range. In light of our results, ITD approaches may be clearly inferior to ABA with regards to describing the structural properties related to tree size inequality in for- ested areas.
Resumo:
Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a realtime dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: "serving water from a jar" and "picking up a bottle". Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application.
Resumo:
Este trabajo propone una serie de algoritmos con el objetivo de extraer información de conjuntos de datos con redes de neuronas. Se estudian dichos algoritmos con redes de neuronas Enhenced Neural Networks (ENN), debido a que esta arquitectura tiene algunas ventajas cuando se aproximan funciones mediante redes neuronales. En la red ENN los pesos de la matriz principal varián con cada patrón, por lo que se comete un error menor en la aproximación. Las redes de neuronas ENN reúnen la información en los pesos de su red auxiliar, se propone un método para obtener información de la red a través de dichos pesos en formas de reglas y asignando un factor de certeza de dichas reglas. La red ENN obtiene un error cuadrático medio menor que el error teórico de una aproximación matemática por ejemplo mediante polinomios de Taylor. Se muestra como una red ENN, entrenada a partir un conjunto de patrones obtenido de una función de variables reales, sus pesos asociados tienen unas relaciones similares a las que se veri_can con las variables independientes con dicha función de variables reales. Las redes de neuronas ENN aproximan polinomios, se extrae conocimiento de un conjunto de datos de forma similar a la regresión estadística, resolviendo de forma más adecuada el problema de multicolionalidad en caso de existir. Las relaciones a partir de los pesos asociados de la matriz de la red auxiliar se obtienen similares a los coeficientes de una regresión para el mismo conjunto numérico. Una red ENN entrenada a partir de un conjunto de datos de una función boolena extrae el conocimiento a partir de los pesos asociados, y la influencia de las variables de la regla lógica de la función booleana, queda reejada en esos pesos asociados a la red auxiliar de la red ENN. Se plantea una red de base radial (RBF) para la clasificación y predicción en problemas forestales y agrícolas, obteniendo mejores resultados que con el modelo de regresión y otros métodos. Los resultados con una red RBF mejoran al método de regresión si existe colinealidad entre los datos que se dispone y no son muy numerosos. También se detecta que variables tienen más importancia en virtud de la variable pronóstico. Obteniendo el error cuadrático medio con redes RBF menor que con otros métodos, en particular que con el modelo de regresión. Abstract A series of algorithms is proposed in this study aiming at the goal of producing information about data groups with a neural network. These algorithms are studied with Enheced Neural Networks (ENN), owing to the fact that this structure shows sever advantages when the functions are approximated by neural networks. Main matrix weights in th ENN vary on each pattern; so, a smaller error is produced when approximating. The neural network ENN joins the weight information contained in their auxiliary network. Thus, a method to obtain information on the network through those weights is proposed by means of rules adding a certainty factor. The net ENN obtains a mean squared error smaller than the theorical one emerging from a mathematical aproximation such as, for example, by means of Taylor's polynomials. This study also shows how in a neural network ENN trained from a set of patterns obtained through a function of real variables, its associated weights have relationships similar to those ones tested by means of the independent variables connected with such functions of real variables. The neural network ENN approximates polynomials through it information about a set of data may be obtained in a similar way than through statistical regression, solving in this way possible problems of multicollinearity in a more suitable way. Relationships emerging from the associated weights in the auxiliary network matrix obtained are similar to the coeficients corresponding to a regression for the same numerical set. A net ENN trained from a boolean function data set obtains its information from its associated weights. The inuence of the variables of the boolean function logical rule are reected on those weights associated to the net auxiliar of the ENN. A radial basis neural networks (RBF) for the classification and prediction of forest and agricultural problems is proposed. This scheme obtains better results than the ones obtained by means of regression and other methods. The outputs with a net RBF better the regression method if the collineality with the available data and their amount is not very large. Detection of which variables are more important basing on the forecast variable can also be achieved, obtaining a mean squared error smaller that the ones obtained through other methods, in special the one produced by the regression pattern.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.
Resumo:
To optimize the last high temperature step of a standard solar cell fabrication process (the contact cofiring step), the aluminium gettering is incorporated in the Impurity-to-Efficiency simulation tool, so that it models the phosphorus and aluminium co-gettering effect on iron impurities. The impact of iron on the cell efficiency will depend on the balance between precipitate dissolution and gettering. Gettering efficiency is similar in a wide range of peak temperatures (600-850 ºC), so that this peak temperature can be optimized favoring other parameters (e.g. ohmic contact). An industrial co-firing step can enhance the co-gettering effect by adding a temperature plateau after the peak of temperature. For highly contaminated materials, a short plateau (menor que 2 min) at low temperature (600 ºC) is shown to reduce the dissolved iron.
Resumo:
El comercio electrónico ha experimentado un fuerte crecimiento en los últimos años, favorecido especialmente por el aumento de las tasas de penetración de Internet en todo el mundo. Sin embargo, no todos los países están evolucionando de la misma manera, con un espectro que va desde las naciones pioneras en desarrollo de tecnologías de la información y comunicaciones, que cuentan con una elevado porcentaje de internautas y de compradores online, hasta las rezagadas de rápida adopción en las que, pese a contar con una menor penetración de acceso, presentan una alta tasa de internautas compradores. Entre ambos extremos se encuentran países como España que, aunque alcanzó hace años una tasa considerable de penetración de usuarios de Internet, no ha conseguido una buena tasa de transformación de internautas en compradores. Pese a que el comercio electrónico ha experimentado importantes aumentos en los últimos años, sus tasas de crecimiento siguen estando por debajo de países con características socio-económicas similares. Para intentar conocer las razones que afectan a la adopción del comercio por parte de los compradores, la investigación científica del fenómeno ha empleado diferentes enfoques teóricos. De entre todos ellos ha destacado el uso de los modelos de adopción, proveniente de la literatura de adopción de sistemas de información en entornos organizativos. Estos modelos se basan en las percepciones de los compradores para determinar qué factores pueden predecir mejor la intención de compra y, en consecuencia, la conducta real de compra de los usuarios. Pese a que en los últimos años han proliferado los trabajos de investigación que aplican los modelos de adopción al comercio electrónico, casi todos tratan de validar sus hipótesis mediante el análisis de muestras de consumidores tratadas como un único conjunto, y del que se obtienen conclusiones generales. Sin embargo, desde el origen del marketing, y en especial a partir de la segunda mitad del siglo XIX, se considera que existen diferencias en el comportamiento de los consumidores, que pueden ser debidas a características demográficas, sociológicas o psicológicas. Estas diferencias se traducen en necesidades distintas, que sólo podrán ser satisfechas con una oferta adaptada por parte de los vendedores. Además, por contar el comercio electrónico con unas características particulares que lo diferencian del comercio tradicional –especialmente por la falta de contacto físico entre el comprador y el producto– a las diferencias en la adopción para cada consumidor se le añaden las diferencias derivadas del tipo de producto adquirido, que si bien habían sido consideradas en el canal físico, en el comercio electrónico cobran especial relevancia. A la vista de todo ello, el presente trabajo pretende abordar el estudio de los factores determinantes de la intención de compra y la conducta real de compra en comercio electrónico por parte del consumidor final español, teniendo en cuenta el tipo de segmento al que pertenezca dicho comprador y el tipo de producto considerado. Para ello, el trabajo contiene ocho apartados entre los que se encuentran cuatro bloques teóricos y tres bloques empíricos, además de las conclusiones. Estos bloques dan lugar a los siguientes ocho capítulos por orden de aparición en el trabajo: introducción, situación del comercio electrónico, modelos de adopción de tecnología, segmentación en comercio electrónico, diseño previo del trabajo empírico, diseño de la investigación, análisis de los resultados y conclusiones. El capítulo introductorio justifica la relevancia de la investigación, además de fijar los objetivos, la metodología y las fases seguidas para el desarrollo del trabajo. La justificación se complementa con el segundo capítulo, que cuenta con dos elementos principales: en primer lugar se define el concepto de comercio electrónico y se hace una breve retrospectiva desde sus orígenes hasta la situación actual en un contexto global; en segundo lugar, el análisis estudia la evolución del comercio electrónico en España, mostrando su desarrollo y situación presente a partir de sus principales indicadores. Este apartado no sólo permite conocer el contexto de la investigación, sino que además permite contrastar la relevancia de la muestra utilizada en el presente estudio con el perfil español respecto al comercio electrónico. Los capítulos tercero –modelos de adopción de tecnologías– y cuarto –segmentación en comercio electrónico– sientan las bases teóricas necesarias para abordar el estudio. En el capítulo tres se hace una revisión general de la literatura de modelos de adopción de tecnología y, en particular, de los modelos de adopción empleados en el ámbito del comercio electrónico. El resultado de dicha revisión deriva en la construcción de un modelo adaptado basado en los modelos UTAUT (Unified Theory of Acceptance and Use of Technology, Teoría unificada de la aceptación y el uso de la tecnología) y UTAUT2, combinado con dos factores específicos de adopción del comercio electrónico: el riesgo percibido y la confianza percibida. Por su parte, en el capítulo cuatro se revisan las metodologías de segmentación de clientes y productos empleadas en la literatura. De dicha revisión se obtienen un amplio conjunto de variables de las que finalmente se escogen nueve variables de clasificación que se consideran adecuadas tanto por su adaptación al contexto del comercio electrónico como por su adecuación a las características de la muestra empleada para validar el modelo. Las nueve variables se agrupan en tres conjuntos: variables de tipo socio-demográfico –género, edad, nivel de estudios, nivel de ingresos, tamaño de la unidad familiar y estado civil–, de comportamiento de compra – experiencia de compra por Internet y frecuencia de compra por Internet– y de tipo psicográfico –motivaciones de compra por Internet. La segunda parte del capítulo cuatro se dedica a la revisión de los criterios empleados en la literatura para la clasificación de los productos en el contexto del comercio electrónico. De dicha revisión se obtienen quince grupos de variables que pueden tomar un total de treinta y cuatro valores, lo que deriva en un elevado número de combinaciones posibles. Sin embargo, pese a haber sido utilizados en el contexto del comercio electrónico, no en todos los casos se ha comprobado la influencia de dichas variables respecto a la intención de compra o la conducta real de compra por Internet; por este motivo, y con el objetivo de definir una clasificación robusta y abordable de tipos de productos, en el capitulo cinco se lleva a cabo una validación de las variables de clasificación de productos mediante un experimento previo con 207 muestras. Seleccionando sólo aquellas variables objetivas que no dependan de la interpretación personal del consumidores y que determinen grupos significativamente distintos respecto a la intención y conducta de compra de los consumidores, se obtiene un modelo de dos variables que combinadas dan lugar a cuatro tipos de productos: bien digital, bien no digital, servicio digital y servicio no digital. Definidos el modelo de adopción y los criterios de segmentación de consumidores y productos, en el sexto capítulo se desarrolla el modelo completo de investigación formado por un conjunto de hipótesis obtenidas de la revisión de la literatura de los capítulos anteriores, en las que se definen las hipótesis de investigación con respecto a las influencias esperadas de las variables de segmentación sobre las relaciones del modelo de adopción. Este modelo confiere a la investigación un carácter social y de tipo fundamentalmente exploratorio, en el que en muchos casos ni siquiera se han encontrado evidencias empíricas previas que permitan el enunciado de hipótesis sobre la influencia de determinadas variables de segmentación. El capítulo seis contiene además la descripción del instrumento de medida empleado en la investigación, conformado por un total de 125 preguntas y sus correspondientes escalas de medida, así como la descripción de la muestra representativa empleada en la validación del modelo, compuesta por un grupo de 817 personas españolas o residentes en España. El capítulo siete constituye el núcleo del análisis empírico del trabajo de investigación, que se compone de dos elementos fundamentales. Primeramente se describen las técnicas estadísticas aplicadas para el estudio de los datos que, dada la complejidad del análisis, se dividen en tres grupos fundamentales: Método de mínimos cuadrados parciales (PLS, Partial Least Squares): herramienta estadística de análisis multivariante con capacidad de análisis predictivo que se emplea en la determinación de las relaciones estructurales de los modelos propuestos. Análisis multigrupo: conjunto de técnicas que permiten comparar los resultados obtenidos con el método PLS entre dos o más grupos derivados del uso de una o más variables de segmentación. En este caso se emplean cinco métodos de comparación, lo que permite asimismo comparar los rendimientos de cada uno de los métodos. Determinación de segmentos no identificados a priori: en el caso de algunas de las variables de segmentación no existe un criterio de clasificación definido a priori, sino que se obtiene a partir de la aplicación de técnicas estadísticas de clasificación. En este caso se emplean dos técnicas fundamentales: análisis de componentes principales –dado el elevado número de variables empleadas para la clasificación– y análisis clúster –del que se combina una técnica jerárquica que calcula el número óptimo de segmentos, con una técnica por etapas que es más eficiente en la clasificación, pero exige conocer el número de clústeres a priori. La aplicación de dichas técnicas estadísticas sobre los modelos resultantes de considerar los distintos criterios de segmentación, tanto de clientes como de productos, da lugar al análisis de un total de 128 modelos de adopción de comercio electrónico y 65 comparaciones multigrupo, cuyos resultados y principales consideraciones son elaboradas a lo largo del capítulo. Para concluir, el capítulo ocho recoge las conclusiones del trabajo divididas en cuatro partes diferenciadas. En primer lugar se examina el grado de alcance de los objetivos planteados al inicio de la investigación; después se desarrollan las principales contribuciones que este trabajo aporta tanto desde el punto de vista metodológico, como desde los punto de vista teórico y práctico; en tercer lugar, se profundiza en las conclusiones derivadas del estudio empírico, que se clasifican según los criterios de segmentación empleados, y que combinan resultados confirmatorios y exploratorios; por último, el trabajo recopila las principales limitaciones de la investigación, tanto de carácter teórico como empírico, así como aquellos aspectos que no habiendo podido plantearse dentro del contexto de este estudio, o como consecuencia de los resultados alcanzados, se presentan como líneas futuras de investigación. ABSTRACT Favoured by an increase of Internet penetration rates across the globe, electronic commerce has experienced a rapid growth over the last few years. Nevertheless, adoption of electronic commerce has differed from one country to another. On one hand, it has been observed that countries leading e-commerce adoption have a large percentage of Internet users as well as of online purchasers; on the other hand, other markets, despite having a low percentage of Internet users, show a high percentage of online buyers. Halfway between those two ends of the spectrum, we find countries such as Spain which, despite having moderately high Internet penetration rates and similar socio-economic characteristics as some of the leading countries, have failed to turn Internet users into active online buyers. Several theoretical approaches have been taken in an attempt to define the factors that influence the use of electronic commerce systems by customers. One of the betterknown frameworks to characterize adoption factors is the acceptance modelling theory, which is derived from the information systems adoption in organizational environments. These models are based on individual perceptions on which factors determine purchase intention, as a mean to explain users’ actual purchasing behaviour. Even though research on electronic commerce adoption models has increased in terms of volume and scope over the last years, the majority of studies validate their hypothesis by using a single sample of consumers from which they obtain general conclusions. Nevertheless, since the birth of marketing, and more specifically from the second half of the 19th century, differences in consumer behaviour owing to demographic, sociologic and psychological characteristics have also been taken into account. And such differences are generally translated into different needs that can only be satisfied when sellers adapt their offer to their target market. Electronic commerce has a number of features that makes it different when compared to traditional commerce; the best example of this is the lack of physical contact between customers and products, and between customers and vendors. Other than that, some differences that depend on the type of product may also play an important role in electronic commerce. From all the above, the present research aims to address the study of the main factors influencing purchase intention and actual purchase behaviour in electronic commerce by Spanish end-consumers, taking into consideration both the customer group to which they belong and the type of product being purchased. In order to achieve this goal, this Thesis is structured in eight chapters: four theoretical sections, three empirical blocks and a final section summarizing the conclusions derived from the research. The chapters are arranged in sequence as follows: introduction, current state of electronic commerce, technology adoption models, electronic commerce segmentation, preliminary design of the empirical work, research design, data analysis and results, and conclusions. The introductory chapter offers a detailed justification of the relevance of this study in the context of e-commerce adoption research; it also sets out the objectives, methodology and research stages. The second chapter further expands and complements the introductory chapter, focusing on two elements: the concept of electronic commerce and its evolution from a general point of view, and the evolution of electronic commerce in Spain and main indicators of adoption. This section is intended to allow the reader to understand the research context, and also to serve as a basis to justify the relevance and representativeness of the sample used in this study. Chapters three (technology acceptance models) and four (segmentation in electronic commerce) set the theoretical foundations for the study. Chapter 3 presents a thorough literature review of technology adoption modelling, focusing on previous studies on electronic commerce acceptance. As a result of the literature review, the research framework is built upon a model based on UTAUT (Unified Theory of Acceptance and Use of Technology) and its evolution, UTAUT2, including two specific electronic commerce adoption factors: perceived risk and perceived trust. Chapter 4 deals with client and product segmentation methodologies used by experts. From the literature review, a wide range of classification variables is studied, and a shortlist of nine classification variables has been selected for inclusion in the research. The criteria for variable selection were their adequacy to electronic commerce characteristics, as well as adequacy to the sample characteristics. The nine variables have been classified in three groups: socio-demographic (gender, age, education level, income, family size and relationship status), behavioural (experience in electronic commerce and frequency of purchase) and psychographic (online purchase motivations) variables. The second half of chapter 4 is devoted to a review of the product classification criteria in electronic commerce. The review has led to the identification of a final set of fifteen groups of variables, whose combination offered a total of thirty-four possible outputs. However, due to the lack of empirical evidence in the context of electronic commerce, further investigation on the validity of this set of product classifications was deemed necessary. For this reason, chapter 5 proposes an empirical study to test the different product classification variables with 207 samples. A selection of product classifications including only those variables that are objective, able to identify distinct groups and not dependent on consumers’ point of view, led to a final classification of products which consisted on two groups of variables for the final empirical study. The combination of these two groups gave rise to four types of products: digital and non-digital goods, and digital and non-digital services. Chapter six characterizes the research –social, exploratory research– and presents the final research model and research hypotheses. The exploratory nature of the research becomes patent in instances where no prior empirical evidence on the influence of certain segmentation variables was found. Chapter six also includes the description of the measurement instrument used in the research, consisting of a total of 125 questions –and the measurement scales associated to each of them– as well as the description of the sample used for model validation (consisting of 817 Spanish residents). Chapter 7 is the core of the empirical analysis performed to validate the research model, and it is divided into two separate parts: description of the statistical techniques used for data analysis, and actual data analysis and results. The first part is structured in three different blocks: Partial Least Squares Method (PLS): the multi-variable analysis is a statistical method used to determine structural relationships of models and their predictive validity; Multi-group analysis: a set of techniques that allow comparing the outcomes of PLS analysis between two or more groups, by using one or more segmentation variables. More specifically, five comparison methods were used, which additionally gives the opportunity to assess the efficiency of each method. Determination of a priori undefined segments: in some cases, classification criteria did not necessarily exist for some segmentation variables, such as customer motivations. In these cases, the application of statistical classification techniques is required. For this study, two main classification techniques were used sequentially: principal component factor analysis –in order to reduce the number of variables– and cluster analysis. The application of the statistical methods to the models derived from the inclusion of the various segmentation criteria –for both clients and products–, led to the analysis of 128 different electronic commerce adoption models and 65 multi group comparisons. Finally, chapter 8 summarizes the conclusions from the research, divided into four parts: first, an assessment of the degree of achievement of the different research objectives is offered; then, methodological, theoretical and practical implications of the research are drawn; this is followed by a discussion on the results from the empirical study –based on the segmentation criteria for the research–; fourth, and last, the main limitations of the research –both empirical and theoretical– as well as future avenues of research are detailed.
Resumo:
Performance of football teams varies constantly due to the dynamic nature of this sport, whilst the typical performance and its spread can be represented by profiles combining different performance-related variables based on data from multiple matches. The current study aims to use a profiling technique to evaluate and compare match performance of football teams in the UEFA Champions League incorporating three situational variables (i.e. strength of team and opponent, match outcome and match location). Match statistics of 72 teams, 496 games across four seasons (2008-09 to 2012-13) of this competition were analysed. Sixteen performance-related events were included: shots, shots on target, shots from open play, shots from set piece, shots from counter attack, passes, pass accuracy (%), crosses, through balls, corners, dribbles, possession, aerial success (%), fouls, tackles, and yellow cards. Teams were classified into three levels of strength by a k-cluster analysis. Profiles of overall performance and profiles incorporating three situational variables for teams of all three levels of strength were set up by presenting the mean, standard deviation, median, lower and upper quartiles of the counts of each event to represent their typical performances and spreads. Means were compared by using one-way ANOVA and independent sample t test (for match location, home and away differences), and were plotted into the same radar charts after unifying all the event counts by standardised score. Established profiles can present straightforwardly typical performances of football teams of different levels playing in different situations, which could provide detailed references for coaches and analysts to evaluate performances of upcoming opposition and of their own.
Resumo:
En esta tesis se analiza el sistema de tracción de un vehículo eléctrico de batería desde el punto de vista de la eficiencia energética y de la exposición a campos magnéticos por parte de los pasajeros (radiación electromagnética). Este estudio incluye tanto el sistema de almacenamiento de energía como la máquina eléctrica, junto con la electrónica de potencia y los sistemas de control asociados a ambos. Los análisis y los resultados presentados en este texto están basados en modelos matemáticos, simulaciones por ordenador y ensayos experimentales a escala de laboratorio. La investigación llevada a cabo durante esta tesis tuvo siempre un marcado enfoque industrial, a pesar de estar desarrollada en un entorno de considerable carácter universitario. Las líneas de investigación acometidas tuvieron como destinatario final al diseñador y al fabricante del vehículo, a pesar de lo cual algunos de los resultados obtenidos son preliminares y/o excesivamente académicos para resultar de interés industrial. En el ámbito de la eficiencia energética, esta tesis estudia sistemas híbridos de almacenamiento de energía basados en una combinación de baterías de litio y supercondensadores. Este tipo de sistemas son analizados desde el punto de vista de la eficiencia mediante modelos matemáticos y simulaciones, cuantificando el impacto de ésta en otros parámetros tales como el envejecimiento de las baterías. Respecto a la máquina eléctrica, el estudio se ha centrado en máquinas síncronas de imanes permanentes. El análisis de la eficiencia considera tanto el diseño de la máquina como la estrategia de control, dejando parcialmente de lado el inversor y la técnica de modulación (que son incluidos en el estudio como fuentes adicionales de pérdidas, pero no como potenciales fuentes de optimización de la eficiencia). En este sentido, tanto la topología del inversor (trifásico, basado en IGBTs) como la técnica de modulación (control de corriente en banda de histéresis) se establecen desde el principio. El segundo aspecto estudiado en esta tesis es la exposición a campos magnéticos por parte de los pasajeros. Este tema se enfoca desde un punto de vista predictivo, y no desde un punto de vista de diagnóstico, puesto que se ha desarrollado una metodología para estimar el campo magnético generado por los dispositivos de potencia de un vehículo eléctrico. Esta metodología ha sido validada mediante ensayos de laboratorio. Otros aspectos importantes de esta contribución, además de la metodología en sí misma, son las consecuencias que se derivan de ella (por ejemplo, recomendaciones de diseño) y la comprensión del problema proporcionada por esta. Las principales contribuciones de esta tesis se listan a continuación: una recopilación de modelos de pérdidas correspondientes a la mayoría de dispositivos de potencia presentes en un vehículo eléctrico de batería, una metodología para analizar el funcionamiento de un sistema híbrido de almacenamiento de energía para aplicaciones de tracción, una explicación de cómo ponderar energéticamente los puntos de operación par-velocidad de un vehículo eléctrico (de utilidad para evaluar el rendimiento de una máquina eléctrica, por ejemplo), una propuesta de incluir un convertidor DC-DC en el sistema de tracción para minimizar las pérdidas globales del accionamiento (a pesar de las nuevas pérdidas introducidas por el propio DC-DC), una breve comparación entre dos tipos distintos de algoritmos de minimización de pérdidas para máquinas síncronas de imanes permanentes, una metodología predictiva para estimar la exposición a campos magnéticos por parte de los pasajeros de un vehículo eléctrico (debida a los equipos de potencia), y finalmente algunas conclusiones y recomendaciones de diseño respecto a dicha exposición a campos magnéticos. ABSTRACT This dissertation analyzes the powertrain of a battery electric vehicle, focusing on energy efficiency and passenger exposure to electromagnetic fields (electromagnetic radiation). This study comprises the energy storage system as well as the electric machine, along with their associated power electronics and control systems. The analysis and conclusions presented in this dissertation are based on mathematical models, computer simulations and laboratory scale tests. The research performed during this thesis was intended to be of industrial nature, despite being developed in a university. In this sense, the work described in this document was carried out thinking of both the designer and the manufacturer of the vehicle. However, some of the results obtained lack industrial readiness, and therefore they remain utterly academic. Regarding energy efficiency, hybrid energy storage systems consisting in lithium batteries, supercapacitors and up to two DC-DC power converters are considered. These kind of systems are analyzed by means of mathematical models and simulations from the energy efficiency point of view, quantifying its impact on other relevant aspects such as battery aging. Concerning the electric machine, permanent magnet synchronous machines are studied in this work. The energy efficiency analysis comprises the machine design and the control strategy, while the inverter and its modulation technique are taken into account but only as sources of further power losses, and not as potential sources for further efficiency optimization. In this sense, both the inverter topology (3-phase IGBT-based inverter) and the switching technique (hysteresis current control) are fixed from the beginning. The second aspect studied in this work is passenger exposure to magnetic fields. This topic is approached from the prediction point of view, rather than from the diagnosis point of view. In other words, a methodology to estimate the magnetic field generated by the power devices of an electric vehicle is proposed and analyzed in this dissertation. This methodology has been validated by laboratory tests. The most important aspects of this contribution, apart from the methodology itself, are the consequences (for instance, design guidelines) and the understanding of the magnetic radiation issue provided by it. The main contributions of this dissertation are listed next: a compilation of loss models for most of the power devices found in a battery electric vehicle powertrain, a simulation-based methodology to analyze hybrid energy storage performance in traction applications, an explanation of how to assign energy-based weights to different operating points in traction drives (useful when assessing electrical machine performance, for instance), a proposal to include one DC-DC converter in electric powertrains to minimize overall power losses in the system (despite the new losses added by the DC-DC), a brief comparison between two kinds of loss-minimization algorithms for permanent magnet synchronous machines in terms of adaptability and energy efficiency, a predictive methodology to estimate passenger magnetic field exposure due to power devices in an electric vehicle, and finally some useful conclusions and design guidelines concerning magnetic field exposure.