15 resultados para Prediction of random e_ects
em Universidad Politécnica de Madrid
Resumo:
Crowd induced dynamic loading in large structures, such as gymnasiums or stadium, is usually modelled as a series of harmonic loads which are defined in terms of their Fourier coefficients. Different values of these coefficients that were obtained from full scale measurements can be found in codes. Recently, an alternative has been proposed, based on random generation of load time histories that take into account phase lag among individuals inside the crowd. This paper presents the testing done on a structure designed to be a gymnasium. Two series of dynamic test were performed on the gym slab. For the first test an electrodynamic shaker was placed at several locations and during the second one people located inside a marked area bounced and jumped guided by different metronome rates. A finite element model (FEM) is presented and a comparison of numerically predicted and experimentally observed vibration modes and frequencies has been used to assess its validity. The second group of measurements will be compared with predictions made using the FEM model and three alternatives for crowd induced load modelling.
Resumo:
A finite element model was used to simulate timberbeams with defects and predict their maximum load in bending. Taking into account the elastoplastic constitutive law of timber, the prediction of fracture load gives information about the mechanisms of timber failure, particularly with regard to the influence of knots, and their local graindeviation, on the fracture. A finite element model was constructed using the ANSYS element Plane42 in a plane stress 2D-analysis, which equates thickness to the width of the section to create a mesh which is as uniform as possible. Three sub-models reproduced the bending test according to UNE EN 408: i) timber with holes caused by knots; ii) timber with adherent knots which have structural continuity with the rest of the beam material; iii) timber with knots but with only partial contact between knot and beam which was artificially simulated by means of contact springs between the two materials. The model was validated using ten 45 × 145 × 3000 mm beams of Pinus sylvestris L. which presented knots and graindeviation. The fracture stress data obtained was compared with the results of numerical simulations, resulting in an adjustment error less of than 9.7%
Resumo:
Salamanca has been considered among the most polluted cities in Mexico. The vehicular park, the industry and the emissions produced by agriculture, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Particulate Matter less than 10 μg/m3 in diameter (PM10). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables (wind speed, wind direction, temperature and relative humidity) and air pollutant concentrations of PM10. Before the prediction, Fuzzy c-Means clustering algorithm have been implemented in order to find relationship among pollutant and meteorological variables. These relationship help us to get additional information that will be used for predicting. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of PM10 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results shown that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours
Resumo:
Cable-stayed bridges represent nowadays key points in transport networks and their seismic behavior needs to be fully understood, even beyond the elastic range of materials. Both nonlinear dynamic (NL-RHA) and static (pushover) procedures are currently available to face this challenge, each with intrinsic advantages and disadvantages, and their applicability in the study of the nonlinear seismic behavior of cable-stayed bridges is discussed here. The seismic response of a large number of finite element models with different span lengths, tower shapes and class of foundation soil is obtained with different procedures and compared. Several features of the original Modal Pushover Analysis (MPA) are modified in light of cable-stayed bridge characteristics, furthermore, an extension of MPA and a new coupled pushover analysis (CNSP) are suggested to estimate the complex inelastic response of such outstanding structures subjected to multi-axial strong ground motions.
Resumo:
Service compositions put together loosely-coupled component services to perform more complex, higher level, or cross-organizational tasks in a platform-independent manner. Quality-of-Service (QoS) properties, such as execution time, availability, or cost, are critical for their usability, and permissible boundaries for their values are defined in Service Level Agreements (SLAs). We propose a method whereby constraints that model SLA conformance and violation are derived at any given point of the execution of a service composition. These constraints are generated using the structure of the composition and properties of the component services, which can be either known or empirically measured. Violation of these constraints means that the corresponding scenario is unfeasible, while satisfaction gives values for the constrained variables (start / end times for activities, or number of loop iterations) which make the scenario possible. These results can be used to perform optimized service matching or trigger preventive adaptation or healing.
Resumo:
This paper investigates the propagation of airblast or pressure waves in air produced by bench blasting (i.e. detonation of the explosive in a row of blastholes, breaking the burden of rock towards the free vertical face of the block). Peak overpressure is calculated as a function of blasting parameters (explosive mass per delay and velocity at which the detonation sequence proceeds along the bench) and the polar coordinates of the position of interest (distance to the source and azimuth with respect to the free face). The model has been fitted to empirical data using linear least squares. The data set is composed of 122 airblast records monitored at distances less than 400 m in 41 production blasts carried out in two quarries. The model is statistically significant and has a determination coefficient of 0.87. The formula is validated from 12 airblast measurements gathered in five additional blasts.
Resumo:
The estimation of power losses due to wind turbine wakes is crucial to understanding overall wind farm economics. This is especially true for large offshore wind farms, as it represents the primary source of losses in available power, given the regular arrangement of rotors, their generally largerdiameter and the lower ambient turbulence level, all of which conspire to dramatically affect wake expansion and, consequently, the power deficit. Simulation of wake effects in offshore wind farms (in reasonable computational time) is currently feasible using CFD tools. An elliptic CFD model basedon the actuator disk method and various RANS turbulence closure schemes is tested and validated using power ratios extracted from Horns Rev and Nysted wind farms, collected as part of the EU-funded UPWIND project. The primary focus of the present work is on turbulence modeling, as turbulent mixing is the main mechanism for flow recovery inside wind farms. A higher-order approach, based on the anisotropic RSM model, is tested to better take into account the imbalance in the length scales inside and outside of the wake, not well reproduced by current two-equation closure schemes.
Resumo:
The present article shows a procedure to predict the flutter speed based on real-time tuning of a quasi non-linear aeroelastic model. A two-dimensional non-linear (freeplay) aeroeslastic model is implemented inMatLab/Simulink with incompressible aerodynamic conditions. A comparison with real compressible conditions is provided. Once the numerical validation is accomplished, a parametric aeroelastic model is built in order to describe the proposed procedure and contribute to reduce the number of flight hours needed to expand the flutter envelope.
Resumo:
Fruit damage during harvesting and handling is a standing problem, particularly for susceptible fruits like peaches and apricots. The resulting mechanical damage is a combination of fruit properties and damage inflicting effects due to procedures and to the equipment. Nine packing lines in the region of Murcia (SE Spain) have been tested with the aid of two different-size electronic fruits IS-100. Probabilities of impacts above three preset thresholds (50 g's, 100 g's and 150 g's) were calculated for each transfer point. Interaction fruit-packing line tests have been also performed in order to study the real incidence of packing lines on natural produce: apricots (1 variety), peaches (3 v.), lemons (1 v.) and oranges (3 v.). Bruises of handled and not handled samples of fruits were compared.
Resumo:
Fuel cycles are designed with the aim of obtaining the highest amount of energy possible. Since higher burnup values are reached, it is necessary to improve our disposal designs, traditionally based on the conservative assumption that they contain fresh fuel. The criticality calculations involved must consider burnup by making the most of the experimental and computational capabilities developed, respectively, to measure and predict the isotopic content of the spent nuclear fuel. These high burnup scenarios encourage a review of the computational tools to find out possible weaknesses in the nuclear data libraries, in the methodologies applied and their applicability range. Experimental measurements of the spent nuclear fuel provide the perfect framework to benchmark the most well-known and established codes, both in the industry and academic research activity. For the present paper, SCALE 6.0/TRITON and MONTEBURNS 2.0 have been chosen to follow the isotopic content of four samples irradiated in the Spanish Vandellós-II pressurized water reactor up to burnup values ranging from 40 GWd/MTU to 75 GWd/MTU. By comparison with the experimental data reported for these samples, we can probe the applicability of these codes to deal with high burnup problems. We have developed new computational tools within MONTENBURNS 2.0. They make possible to handle an irradiation history that includes geometrical and positional changes of the samples within the reactor core. This paper describes the irradiation scenario against which the mentioned codes and our capabilities are to be benchmarked.
Resumo:
During the last two decades the topic of human induced vibration has attracted a lot of attention among civil engineering practitioners and academics alike. Usually this type of problem may be encountered in pedestrian footbridges or floors of paperless offices. Slender designs are becoming increasingly popular, and as a consequence, the importance of paying attention to vibration serviceability also increases. This paper resumes the results obtained from measurements taken at different points of an aluminium catwalk which is 6 m in length by 0.6 m in width. Measurements were carried out when subjecting the structure to different actions:1)Static test: a steel cylinder of 35 kg was placed in the middle of the catwalk; 2)Dynamic test: this test consists of exciting the structure with singles impulses; 3)Dynamic test: people walking on the catwalk. Identification of the mechanical properties of the structure is an achievement of the paper. Indirect methods were used to estimate properties including the support stiffness, the beam bending stiffness, the mass of the structure (using Rayleigh method and iterative matrix method), the natural frequency (using the time domain and frequency domain analysis) and the damping ratio (by calculating the logarithmic decrement). Experimental results and numerical predictions for the response of an aluminium catwalk subjected to walking loads have been compared. The damping of this light weight structure depends on the amplitude of vibration which complicates the tuning of a structural model. In the light of the results obtained it seems that the used walking load model is not appropriate as the predicted transient vibration values (TTVs) are much higher than the measured ones.
Resumo:
We apply diffusion strategies to propose a cooperative reinforcement learning algorithm, in which agents in a network communicate with their neighbors to improve predictions about their environment. The algorithm is suitable to learn off-policy even in large state spaces. We provide a mean-square-error performance analysis under constant step-sizes. The gain of cooperation in the form of more stability and less bias and variance in the prediction error, is illustrated in the context of a classical model. We show that the improvement in performance is especially significant when the behavior policy of the agents is different from the target policy under evaluation.
Resumo:
Outline: • Introduction • Numerical model SHOCKLAS© • Single LSP pulses • Overlapped LSP pulses • Discussion and Outlook
Resumo:
A 2D computer simulation method of random packings is applied to sets of particles generated by a self-similar uniparametric model for particle size distributions (PSDs) in granular media. The parameter p which controls the model is the proportion of mass of particles corresponding to the left half of the normalized size interval [0,1]. First the influence on the total porosity of the parameter p is analyzed and interpreted. It is shown that such parameter, and the fractal exponent of the associated power scaling, are efficient packing parameters, but this last one is not in the way predicted in a former published work addressing an analogous research in artificial granular materials. The total porosity reaches the minimum value for p = 0.6. Limited information on the pore size distribution is obtained from the packing simulations and by means of morphological analysis methods. Results show that the range of pore sizes increases for decreasing values of p showing also different shape in the volume pore size distribution. Further research including simulations with a greater number of particles and image resolution are required to obtain finer results on the hierarchical structure of pore space.
Resumo:
To develop a Support Vector Machine (SVM) algorithm as a predictive tool for diagnostic outcome in patients with FE-EOP, based on clinical and biomedical data at the emergence of the illness.