4 resultados para Precise Orbit Determination

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tesis se basa en el estudio de la trayectoria que pasa por dos puntos en el problema de los dos cuerpos, inicialmente desarrollado por Lambert, del que toma su nombre. En el pasado, el Problema de Lambert se ha utilizado para la determinación de órbitas a partir de observaciones astronómicas de los cuerpos celestes. Actualmente, se utiliza continuamente en determinación de órbitas, misiones planetaria e interplanetarias, encuentro espacial e interceptación, o incluso en corrección de orbitas. Dada su gran importancia, se decide investigar especialmente sobre su solución y las aplicaciones en las misiones espaciales actuales. El campo de investigación abierto, es muy amplio, así que, es necesario determinar unos objetivos específicos realistas, en el contexto de ejecución de una Tesis, pero que sirvan para mostrar con suficiente claridad el potencial de los resultados aportados en este trabajo, e incluso poder extenderlos a otros campos de aplicación. Como resultado de este análisis, el objetivo principal de la Tesis se enfoca en el desarrollo de algoritmos para resolver el Problema de Lambert, que puedan ser aplicados de forma muy eficiente en las misiones reales donde aparece. En todos los desarrollos, se ha considerado especialmente la eficiencia del cálculo computacional necesario en comparación con los métodos existentes en la actualidad, destacando la forma de evitar la pérdida de precisión inherente a este tipo de algoritmos y la posibilidad de aplicar cualquier método iterativo que implique el uso de derivadas de cualquier orden. En busca de estos objetivos, se desarrollan varias soluciones para resolver el Problema de Lambert, todas ellas basadas en la resolución de ecuaciones transcendentes, con las cuales, se alcanzan las siguientes aportaciones principales de este trabajo: • Una forma genérica completamente diferente de obtener las diversas ecuaciones para resolver el Problema de Lambert, mediante desarrollo analítico, desde cero, a partir de las ecuaciones elementales conocidas de las cónicas (geométricas y temporal), proporcionando en todas ellas fórmulas para el cálculo de derivadas de cualquier orden. • Proporcionar una visión unificada de las ecuaciones más relevantes existentes, mostrando la equivalencia con variantes de las ecuaciones aquí desarrolladas. • Deducción de una nueva variante de ecuación, el mayor logro de esta Tesis, que destaca en eficiencia sobre todas las demás (tanto en coste como en precisión). • Estudio de la sensibilidad de la solución ante variación de los datos iniciales, y como aplicar los resultados a casos reales de optimización de trayectorias. • También, a partir de los resultados, es posible deducir muchas propiedades utilizadas en la literatura para simplificar el problema, en particular la propiedad de invariancia, que conduce al Problema Transformado Simplificado. ABSTRACT This thesis is based on the study of the two-body, two-point boundary-value problem, initially developed by Lambert, from who it takes its name. Since the past, Lambert's Problem has been used for orbit determination from astronomical observations of celestial bodies. Currently, it is continuously used in orbit determinations, for planetary and interplanetary missions, space rendezvous, and interception, or even in orbit corrections. Given its great importance, it is decided to investigate their solution and applications in the current space missions. The open research field is very wide, it is necessary to determine specific and realistic objectives in the execution context of a Thesis, but that these serve to show clearly enough the potential of the results provided in this work, and even to extended them to other areas of application. As a result of this analysis, the main aim of the thesis focuses on the development of algorithms to solve the Lambert’s Problem which can be applied very efficiently in real missions where it appears. In all these developments, it has been specially considered the efficiency of the required computational calculation compared to currently existing methods, highlighting how to avoid the loss of precision inherent in such algorithms and the possibility to apply any iterative method involving the use of derivatives of any order. Looking to meet these objectives, a number of solutions to solve the Lambert’s Problem are developed, all based on the resolution of transcendental equations, with which the following main contributions of this work are reached: • A completely different generic way to get the various equations to solve the Lambert’s Problem by analytical development, from scratch, from the known elementary conic equations (geometrics and temporal), by providing, in all cases, the calculation of derivatives of any order. • Provide a unified view of most existing relevant equations, showing the equivalence with variants of the equations developed here. • Deduction of a new variant of equation, the goal of this Thesis, which emphasizes efficiency (both computational cost and accuracy) over all other. • Estudio de la sensibilidad de la solución ante la variación de las condiciones iniciales, mostrando cómo aprovechar los resultados a casos reales de optimización de trayectorias. • Study of the sensitivity of the solution to the variation of the initial data, and how to use the results to real cases of trajectories’ optimization. • Additionally, from results, it is possible to deduce many properties used in literature to simplify the problem, in particular the invariance property, which leads to a simplified transformed problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although there are numerous accurate measuring methods to determine soil moisture content in a spot, until very recently there were no precise in situ and in real time methods that were able to measure soil moisture content along a line. By means of the Distributed Fiber Optic Temperature Measurement method or DFOT, the temperature in 0.12 m intervals and long distances (up to 10,000 m) with a high time frequency and an accuracy of +0.2º C is determined. The principle of temperature measurement along a fiber optic cable is based on the thermal sensitivity of the relative intensities of backscattered photons that arise from collisions with electrons in the core of the glass fiber. A laser pulse, generated by the DTS unit, traversing a fiber optic cable will result in backscatter at two frequencies. The DTS quantifies the intensity of these backscattered photons and elapsed time between the pulse and the observed returned light. The intensity of one of the frequencies is strongly dependent on the temperature at the point where the scattering process occurred. The computed temperature is attributed to the position along the cable from which the light was reflected, computed from the time of travel for the light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, abstract interpretation algorithms are described for computing the sharmg as well as the freeness information about the run-time instantiations of program variables. An abstract domain is proposed which accurately and concisely represents combined freeness and sharing information for program variables. Abstract unification and all other domain-specific functions for an abstract interpreter working on this domain are presented. These functions are illustrated with an example. The importance of inferring freeness is stressed by showing (1) the central role it plays in non-strict goal independence, and (2) the improved accuracy it brings to the analysis of sharing information when both are computed together. Conversely, it is shown that keeping accurate track of sharing allows more precise inference of freeness, thus resulting in an overall much more powerful abstract interpreter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The arrangement of atoms at the surface of a solid accounts for many of its properties: Hardness, chemical activity, corrosion, etc. are dictated by the precise surface structure. Hence, finding it, has a broad range of technical and industrial applications. The ability to solve this problem opens the possibility of designing by computer materials with properties tailored to specific applications. Since the search space grows exponentially with the number of atoms, its solution cannot be achieved for arbitrarily large structures. Presently, a trial and error procedure is used: an expert proposes an structure as a candidate solution and tries a local optimization procedure on it. The solution relaxes to the local minimum in the attractor basin corresponding to the initial point, that might be the one corresponding to the global minimum or not. This procedure is very time consuming and, for reasonably sized surfaces, can take many iterations and much effort from the expert. Here we report on a visualization environment designed to steer this process in an attempt to solve bigger structures and reduce the time needed. The idea is to use an immersive environment to interact with the computation. It has immediate feedback to assess the quality of the proposed structure in order to let the expert explore the space of candidate solutions. The visualization environment is also able to communicate with the de facto local solver used for this problem. The user is then able to send trial structures to the local minimizer and track its progress as they approach the minimum. This allows for simultaneous testing of candidate structures. The system has also proved very useful as an educational tool for the field.