4 resultados para Pre-clinical tests

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

La Diabetes Mellitus se define como el trastorno del metabolismo de los carbohidratos, resultante de una producción insuficiente o nula de insulina en las células beta del páncreas, o la manifestación de una sensibilidad reducida a la insulina por parte del sistema metabólico. La diabetes tipo 1 se caracteriza por la nula producción de insulina por la destrucción de las células beta del páncreas. Si no hay insulina en el torrente sanguíneo, la glucosa no puede ser absorbida por las células, produciéndose un estado de hiperglucemia en el paciente, que a medio y largo plazo si no es tratado puede ocasionar severas enfermedades, conocidos como síndromes de la diabetes. La diabetes tipo 1 es una enfermedad incurable pero controlable. La terapia para esta enfermedad consiste en la aplicación exógena de insulina con el objetivo de mantener el nivel de glucosa en sangre dentro de los límites normales. Dentro de las múltiples formas de aplicación de la insulina, en este proyecto se usará una bomba de infusión, que unida a un sensor subcutáneo de glucosa permitirá crear un lazo de control autónomo que regule la cantidad optima de insulina aplicada en cada momento. Cuando el algoritmo de control se utiliza en un sistema digital, junto con el sensor subcutáneo y bomba de infusión subcutánea, se conoce como páncreas artificial endocrino (PAE) de uso ambulatorio, hoy día todavía en fase de investigación. Estos algoritmos de control metabólico deben de ser evaluados en simulación para asegurar la integridad física de los pacientes, por lo que es necesario diseñar un sistema de simulación mediante el cual asegure la fiabilidad del PAE. Este sistema de simulación conecta los algoritmos con modelos metabólicos matemáticos para obtener una visión previa de su funcionamiento. En este escenario se diseñó DIABSIM, una herramienta desarrollada en LabViewTM, que posteriormente se trasladó a MATLABTM, y basada en el modelo matemático compartimental propuesto por Hovorka, con la que poder simular y evaluar distintos tipos de terapias y reguladores en lazo cerrado. Para comprobar que estas terapias y reguladores funcionan, una vez simulados y evaluados, se tiene que pasar a la experimentación real a través de un protocolo de ensayo clínico real, como paso previo al PEA ambulatorio. Para poder gestionar este protocolo de ensayo clínico real para la verificación de los algoritmos de control, se creó una interfaz de usuario a través de una serie de funciones de simulación y evaluación de terapias con insulina realizadas con MATLABTM (GUI: Graphics User Interface), conocido como Entorno de Páncreas artificial con Interfaz Clínica (EPIC). EPIC ha sido ya utilizada en 10 ensayos clínicos de los que se han ido proponiendo posibles mejoras, ampliaciones y/o cambios. Este proyecto propone una versión mejorada de la interfaz de usuario EPIC propuesta en un proyecto anterior para gestionar un protocolo de ensayo clínico real para la verificación de algoritmos de control en un ambiente hospitalario muy controlado, además de estudiar la viabilidad de conectar el GUI con SimulinkTM (entorno gráfico de Matlab de simulación de sistemas) para su conexión con un nuevo simulador de pacientes aprobado por la JDRF (Juvenil Diabetes Research Foundation). SUMMARY The diabetes mellitus is a metabolic disorder of carbohydrates, as result of an insufficient or null production of insulin in the beta cellules of pancreas, or the manifestation of a reduced sensibility to the insulin from the metabolic system. The type 1 diabetes is characterized for a null production of insulin due to destruction of the beta cellules. Without insulin in the bloodstream, glucose can’t be absorbed by the cellules, producing a hyperglycemia state in the patient and if pass a medium or long time and is not treated can cause severe disease like diabetes syndrome. The type 1 diabetes is an incurable disease but controllable one. The therapy for this disease consists on the exogenous insulin administration with the objective to maintain the glucose level in blood within the normal limits. For the insulin administration, in this project is used an infusion pump, that permit with a subcutaneous glucose sensor, create an autonomous control loop that regulate the optimal insulin amount apply in each moment. When the control algorithm is used in a digital system, with the subcutaneous senor and infusion subcutaneous pump, is named as “Artificial Endocrine Pancreas” for ambulatory use, currently under investigate. These metabolic control algorithms should be evaluates in simulation for assure patients’ physical integrity, for this reason is necessary to design a simulation system that assure the reliability of PAE. This simulation system connects algorithms with metabolic mathematics models for get a previous vision of its performance. In this scenario was created DIABSIMTM, a tool developed in LabView, that later was converted to MATLABTM, and based in the compartmental mathematic model proposed by Hovorka that could simulate and evaluate several different types of therapy and regulators in closed loop. To check the performance of these therapies and regulators, when have been simulated and evaluated, will be necessary to pass to real experimentation through a protocol of real clinical test like previous step to ambulatory PEA. To manage this protocol was created an user interface through the simulation and evaluation functions od therapies with insulin realized with MATLABTM (GUI: Graphics User Interface), known as “Entorno de Páncreas artificial con Interfaz Clínica” (EPIC).EPIC have been used in 10 clinical tests which have been proposed improvements, adds and changes. This project proposes a best version of user interface EPIC proposed in another project for manage a real test clinical protocol for checking control algorithms in a controlled hospital environment and besides studying viability to connect the GUI with SimulinkTM (Matlab graphical environment in systems simulation) for its connection with a new patients simulator approved for the JDRF (Juvenil Diabetes Research Foundation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the TP53 gene are very common in human cancers, and are associated with poor clinical outcome. Transgenic mouse models lacking the Trp53 gene or that express mutant Trp53 transgenes produce tumours with malignant features in many organs. We previously showed the transcriptome of a p53-deficient mouse skin carcinoma model to be similar to those of human cancers with TP53 mutations and associated with poor clinical outcomes. This report shows that much of the 682-gene signature of this murine skin carcinoma transcriptome is also present in breast and lung cancer mouse models in which p53 is inhibited. Further, we report validated gene-expression-based tests for predicting the clinical outcome of human breast and lung adenocarcinoma. It was found that human patients with cancer could be stratified based on the similarity of their transcriptome with the mouse skin carcinoma 682-gene signature. The results also provide new targets for the treatment of p53-defective tumours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Clinical Trials (CTs) are essential for bridging the gap between experimental research on new drugs and their clinical application. Just like CTs for traditional drugs and biologics have helped accelerate the translation of biomedical findings into medical practice, CTs for nanodrugs and nanodevices could advance novel nanomaterials as agents for diagnosis and therapy. Although there is publicly available information about nanomedicine-related CTs, the online archiving of this information is carried out without adhering to criteria that discriminate between studies involving nanomaterials or nanotechnology-based processes (nano), and CTs that do not involve nanotechnology (non-nano). Finding out whether nanodrugs and nanodevices were involved in a study from CT summaries alone is a challenging task. At the time of writing, CTs archived in the well-known online registry ClinicalTrials.gov are not easily told apart as to whether they are nano or non-nano CTs-even when performed by domain experts, due to the lack of both a common definition for nanotechnology and of standards for reporting nanomedical experiments and results. METHODS: We propose a supervised learning approach for classifying CT summaries from ClinicalTrials.gov according to whether they fall into the nano or the non-nano categories. Our method involves several stages: i) extraction and manual annotation of CTs as nano vs. non-nano, ii) pre-processing and automatic classification, and iii) performance evaluation using several state-of-the-art classifiers under different transformations of the original dataset. RESULTS AND CONCLUSIONS: The performance of the best automated classifier closely matches that of experts (AUC over 0.95), suggesting that it is feasible to automatically detect the presence of nanotechnology products in CT summaries with a high degree of accuracy. This can significantly speed up the process of finding whether reports on ClinicalTrials.gov might be relevant to a particular nanoparticle or nanodevice, which is essential to discover any precedents for nanotoxicity events or advantages for targeted drug therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IgE-mediated allergy to wheat proteins can be caused by exposure through ingestion, inhalation, or skin/mucosal contact, and can affect various populations and age groups. Respiratory allergy to wheat proteins is commonly observed in adult patients occupationally exposed to flour, whereas wheat food allergy is more common in children. Wheat allergy is of growing importance for patients with recurrent anaphylaxis, especially when exercise related. The diagnosis of wheat allergy relies on a consistent clinical history, skin prick testing with well-characterized extracts and specific IgE tests. The accuracy of wheat allergy diagnosis may be improved by measuring IgE responses to several wheat components. However, a high degree of heterogeneity has been found in the recognition pattern of allergens among patient groups with different clinical profiles, as well as within each group. Thus, oral provocation with wheat or the implicated cereal is the reference test for the definitive diagnosis of ingested wheat/cereal allergy.