3 resultados para Polyurethane foam

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study is to develop fully renewable and environmentally benign techniques for improving the fire safety of flexible polyurethane foams (PUFs). A multilayered coating made from cationic chitosan (CS) and anionic alginate (AL) was deposited on PUFs through layer-by-layer assembly. This coating system exhibits a slight influence on the thermal stability of PUF, but significantly improves the char formation during combustion. Cone calorimetry reveals that 10 CS-AL bilayers (only 5.7% of the foams weight) lead to a 66% and 11% reduction in peak heat release rate and total heat release, respectively, compared with those of the uncoated control. The notable decreased fire hazards of PUF are attributed to the CS-AL coatings being beneficial to form an insulating protective layer on the surface of burning materials that inhibits the oxygen and heat permeation and slows down the flammable gases in the vapor phase, and thereby improves the flame resistance. This water-based, environmentally benign natural coating will stimulate further efforts in improving fire safety for a variety of polymer substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the potential use of non-catalyzed water-soluble blocked polyurethane prepolymer (PUP) as a bifunctional cross-linker for collagenous scaffolds. The effect of concentration (5, 10, 15 and 20%), time (4, 6, 12 and 24 h), medium volume (50, 100, 200 and 300%) and pH (7.4, 8.2, 9 and 10) over stability, microstructure and tensile mechanical behavior of acellular pericardial matrix was studied. The cross-linking index increased up to 81% while the denaturation temperature increased up to 12 °C after PUP crosslinking. PUP-treated scaffold resisted the collagenase degradation (0.167 ± 0.14 mmol/g of liberated amine groups vs. 598 ± 60 mmol/g for non-cross-linked matrix). The collagen fiber network was coated with PUP while viscoelastic properties were altered after cross-linking. The treatment of the pericardial scaffold with PUP allows (i) different densities of cross-linking depending of the process parameters and (ii) tensile properties similar to glutaraldehyde method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need of new systems for the storage and conversion of renewable energy sources is fueling the research in supercapacitors. In this work, we propose a low temperature route for the synthesis of electrodes for these supercapacitors: electrodeposition of a transition metal hydroxide–Ni(OH)2 on a graphene foam. This electrode combines the superior mechanical and electrical properties of graphene, the large specific surface area of the foam and the large pseudocapacitance of Ni(OH)2. We report a specific capacitance up to 900 F/g as well as specific power and energy comparable to active carbon electrodes. These electrodes are potential candidates for their use in energy applications.