1 resultado para Polar Liquids

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La presente tesis es un estudio analítico y numérico del electrospray. En la configuración más sencilla, un caudal constante del líquido a atomizar, que debe tener una cierta conductividad eléctrica, se inyecta en un medio dieléctrico (un gas u otro líquido inmiscible con el primero) a través de un tubo capilar metálico. Entre este tubo y un electrodo lejano se aplica un voltaje continuo que origina un campo eléctrico en el líquido conductor y en el espacio que lo rodea. El campo eléctrico induce una corriente eléctrica en el líquido, que acumula carga en su superficie, y da lugar a un esfuerzo eléctrico sobre la superficie, que tiende a alargarla en la dirección del campo eléctrico. El líquido forma un menisco en el extremo del tubo capilar cuando el campo eléctrico es suficientemente intenso y el caudal suficientemente pequeño. Las variaciones de presión y los esfuerzos viscosos asociados al movimiento del líquido son despreciables en la mayor parte de este menisco, siendo dominantes los esfuerzos eléctrico y de tensión superficial que actúan sobre la superficie del líquido. En el modo de funcionamiento llamado de conochorro, el balance de estos esfuerzos hace que el menisco adopte una forma cónica (el cono de Taylor) en una región intermedia entre el extremo del tubo y la punta del menisco. La velocidad del líquido aumenta al acercarse al vértice del cono, lo cual propicia que las variaciones de la presión en el líquido generadas por la inercia o por la viscosidad entren en juego, desequilibrando el balance de esfuerzos mencionado antes. Como consecuencia, del vértice del cono sale un delgado chorro de líquido, que transporta la carga eléctrica que se acumula en la superficie. La acción del campo eléctrico tangente a la superficie sobre esta carga origina una tracción eléctrica que tiende a alargar el chorro. Esta tracción no es relevante en el menisco, donde el campo eléctrico tangente a la superficie es muy pequeño, pero se hace importante en el chorro, donde es la causa del movimiento del líquido. Lejos del cono, el chorro puede o bien desarrollar una inestabilidad asimétrica que lo transforma en una espiral (whipping) o bien romperse en un spray de gotas prácticamente monodispersas cargadas eléctricamente. La corriente eléctrica transportada por el líquido es la suma de la corriente de conducción en el interior del líquido y la corriente debida a la convección de la carga acumulada en su superficie. La primera domina en el menisco y la segunda en el chorro lejano, mientras que las dos son comparables en una región intermedia de transferencia de corriente situada al comienzo del chorro aunque aguas abajo de la región de transición cono-chorro, en la que el menisco deja de ser un cono de Taylor. Para un campo exterior dado, la acumulación de carga eléctrica en la superficie del líquido reduce el campo eléctrico en el interior del mismo, que llega a anularse cuando la carga alcanza un estado final de equilibrio. El tiempo característico de este proceso es el tiempo de relajación dieléctrica, que es una propiedad del líquido. Cuando el tiempo de residencia del líquido en la región de transición cono-chorro (o en otra región del campo fluido) es grande frente al tiempo de relajación dieléctrica, la carga superficial sigue una sucesión de estados de equilibrio y apantalla al líquido del campo exterior. Cuando esta condición deja de cumplirse, aparecen efectos de relajación de carga, que se traducen en que el campo exterior penetra en el líquido, a no ser que su constante dieléctrica sea muy alta, en cuyo caso el campo inducido por la carga de polarización evita la entrada del campo exterior en el menisco y en una cierta región del chorro. La carga eléctrica en equilibrio en la superficie de un menisco cónico intensifica el campo eléctrico y determina su variación espacial hasta distancias aguas abajo del menisco del orden de su tamaño. Este campo, calculado por Taylor, es independiente del voltaje aplicado, por lo que las condiciones locales del flujo y el valor de la corriente eléctrica son también independientes del voltaje en tanto los tamaños de las regiones que determinan estas propiedades sean pequeños frente al tamaño del menisco. Los resultados experimentales publicados en la literatura muestran que existe un caudal mínimo para el que el modo cono-chorro que acabamos de describir deja de existir. El valor medio y la desviación típica de la distribución de tamaños de las gotas generadas por un electrospray son mínimos cuando se opera cerca del caudal mínimo. A pesar de que los mecanismos responsables del caudal mínimo han sido muy estudiados, no hay aún una teoría completa del mismo, si bien su existencia parece estar ligada a la aparición de efectos de relajación de carga en la región de transición cono-chorro. En esta tesis, se presentan estimaciones de orden de magnitud, algunas existentes y otras nuevas, que muestran los balances dominantes responsables de las distintas regiones de la estructura asintótica de la solución en varios casos de interés. Cuando la inercia del líquido juega un papel en la transición cono-chorro, los resultados muestran que la región de transferencia de corriente, donde la mayor parte de la corriente pasa a la superficie, está en el chorro aguas abajo de la región de transición cono-chorro. Los efectos de relajación de carga aparecen de forma simultánea en el chorro y la región de transición cuando el caudal se disminuye hasta valores de un cierto orden. Para caudales aún menores, los efectos de relajación de carga se notan en el menisco, en una región grande comparada con la de transición cono-chorro. Cuando el efecto de las fuerzas de viscosidad es dominante en la región de transición, la región de transferencia de corriente está en el chorro pero muy próxima a la región de transición cono-chorro. Al ir disminuyendo el caudal, los efectos de relajación de carga aparecen progresivamente en el chorro, en la región de transición y por último en el menisco. Cuando el caudal es mucho mayor que el mínimo del modo cono-chorro, el menisco deja de ser cónico. El campo eléctrico debido al voltaje aplicado domina en la región de transferencia de corriente, y tanto la corriente eléctrica como el tamaño de las diferentes regiones del problema pasan a depender del voltaje aplicado. Como resultado de esta dependencia, el plano caudal-voltaje se divide en diferentes regiones que se analizan separadamente. Para caudales suficientemente grandes, la inercia del líquido termina dominando frente a las fuerzas de la viscosidad. Estos resultados teóricos se han validado con simulaciones numéricas. Para ello se ha formulado un modelo simplificado del flujo, el campo eléctrico y el transporte de carga en el menisco y el chorro del electrospray. El movimiento del líquido se supone casi unidireccional y se describe usando la aproximación de Cosserat para un chorro esbelto. Esta aproximación, ampliamente usada en la literatura, permite simular con relativa facilidad múltiples casos y cubrir amplios rangos de valores de los parámetros reteniendo los efectos de la viscosidad y la inercia del líquido. Los campos eléctricos dentro y fuera del liquido están acoplados y se calculan sin simplificación alguna usando un método de elementos de contorno. La solución estacionaria del problema se calcula mediante un método iterativo. Para explorar el espacio de los parámetros, se comienza calculando una solución para valores fijos de las propiedades del líquido, el voltaje aplicado y el caudal. A continuación, se usa un método de continuación que permite delinear la frontera del dominio de existencia del modo cono-chorro, donde el método iterativo deja de converger. Cuando el efecto de la inercia del líquido domina en la región de transición cono-chorro, el caudal mínimo para el cual el método iterativo deja de converger es del orden del valor estimado del caudal para el que comienza a haber efectos de relajación de carga en el chorro y el cono. Aunque las simulaciones no convergen por debajo de dicho caudal, el valor de la corriente eléctrica para valores del caudal ligeramente mayores parece ajustarse a las estimaciones para caudales menores, reflejando un posible cambio en los balances aplicables. Por el contrario, cuando las fuerzas viscosas dominan en la región de transición, se pueden obtener soluciones estacionarias para caudales bastante menores que aquel para el que aparecen efectos de relajación de carga en la región de transición cono-chorro. Los resultados numéricos obtenidos para estos pequeños caudales se ajustan perfectamente a las estimaciones de orden de magnitud que se describen en la memoria. Por último, se incluyen como anexos dos estudios teóricos que han surgido de forma natural durante el desarrollo de la tesis. El primero hace referencia a la singularidad en el campo eléctrico que aparece en la línea de contacto entre el líquido y el tubo capilar en la mayoría de las simulaciones. Primero se estudia en qué situaciones el campo eléctrico tiende a infinito en la línea de contacto. Después, se comprueba que dicha singularidad no supone un fallo en la descripción del problema y que además no afecta a la solución lejos de la línea de contacto. También se analiza si los esfuerzos eléctricos infinitamente grandes a los que da lugar dicha singularidad pueden ser compensados por el resto de esfuerzos que actúan en la superficie del líquido. El segundo estudio busca determinar el tamaño de la región de apantallamiento en un chorro de líquido dieléctrico sin carga superficial. En esta región, el campo exterior es compensado parcialmente por el campo que induce la carga de polarización en la superficie del líquido, de forma que en el interior del líquido el campo eléctrico es mucho menor que en el exterior. Una región como ésta aparece en las estimaciones cuando los efectos de relajación de carga son importantes en la región de transferencia de corriente en el chorro. ABSTRACT This aim of this dissertation is a theoretical and numerical analysis of an electrospray. In its most simple configuration, a constant flow rate of the liquid to be atomized, which has to be an electrical conductor, is injected into a dielectric medium (a gas or another inmiscible fluid) through a metallic capillary tube. A constant voltage is applied between this tube and a distant electrode that produces an electric field in the liquid and the surrounding medium. This electric field induces an electric current in the liquid that accumulates charge at its surface and leads to electric stresses that stretch the surface in the direction of the electric field. A meniscus appears on the end of the capillary tube when the electric field is sufficiently high and the flow rate is small. Pressure variations and viscous stresses due to the motion of the liquid are negligible in most of the meniscus, where normal electric and surface tension stresses acting on the surface are dominant. In the so-called cone-jet mode, the balance of these stresses forces the surface to adopt a conical shape -Taylor cone- in a intermediate region between the end of the tube and the tip of the meniscus. When approaching the cone apex, the velocity of the liquid increases and leads to pressure variations that eventually disturb the balance of surfaces tension and electric stresses. A thin jet emerges then from the tip of the meniscus that transports the charge accumulated at its surface. The electric field tangent to the surface of the jet acts on this charge and continuously stretches the jet. This electric force is negligible in the meniscus, where the component of the electric field tangent to the surface is small, but becomes very important in the jet. Far from the cone, the jet can either develop an asymmetrical instability named “whipping”, whereby the jet winds into a spiral, or break into a spray of small, nearly monodisperse, charged droplets. The electric current transported by the liquid has two components, the conduction current in the bulk of the liquid and the convection current due to the transport of the surface charge by the flow. The first component dominates in the meniscus, the second one in the far jet, and both are comparable in a current transfer region located in the jet downstream of the cone-jet transition region where the meniscus ceases to be a Taylor cone. Given an external electric field, the charge that accumulates at the surface of the liquid reduces the electric field inside the liquid, until an equilibrium is reached in which the electric field induced by the surface charge counters the external electric field and shields the liquid from this field. The characteristic time of this process is the electric relaxation time, which is a property of the liquid. When the residence time of the liquid in the cone-jet transition region (or in other region of the flow) is greater than the electric relaxation time, the surface charge follows a succession of equilibrium states and continuously shield the liquid from the external field. When this condition is not satisfied, charge relaxation effects appear and the external field penetrates into the liquid unless the liquid permittivity is large. For very polar liquids, the field due to the polarization charge at the surface prevents the external field from entering the liquid in the cone and in certain region of the jet. The charge at the surface of a conical meniscus intensifies the electric field around the cone, determining its spatial variation up to distances downstream of the apex of the order of the size of the meniscus. This electric field, first computed by Taylor, is independent of the applied voltage. Therefore local flow characteristics and the electric current carried by the jet are also independent of the applied voltage provided the size of the regions that determine these magnitudes are small compared with the size of the meniscus. Many experiments in the literature show the existence of a minimum flow rate below which the cone-jet mode cannot be established. The mean value and the standard deviation of the electrospray droplet size distribution are minimum when the device is operated near the minimum flow rate. There is no complete explanation of the minimum flow rate, even though possible mechanisms have been extensively studied. The existence of a minimum flow rate seems to be connected with the appearance of charge relaxation effects in the transition region. In this dissertation, order of magnitude estimations are worked out that show the dominant balances in the different regions of the asymptotic structure of the solution for different conditions of interest. When the inertia of the liquid plays a role in the cone-jet transition region, the region where most of the electric current is transfered to the surface lies in the jet downstream the cone-jet transition region. When the flow rate decreases to a certain value, charge relaxation effects appear simultaneously in the jet and in the transition region. For smaller values of the flow rate, charge relaxation effects are important in a region of the meniscus larger than the transition region. When viscous forces dominate in the flow in the cone-jet transition region, the current transfer region is located in the jet immediately after the transition region. When flow rate is decreased, charge relaxation effects appears gradually, first in the jet, then in the transition region, and finally in the meniscus. When flow rate is much larger than the cone-jet mode minimum, the meniscus ceases to be a cone. The electric current and the structure of the solution begin to depend on the applied voltage. The flow rate-voltage plane splits into different regions that are analyzed separately. For sufficiently large flow rates, the effect of the inertia of the liquid always becomes greater than the effect of the viscous forces. A set of numerical simulations have been carried out in order to validate the theoretical results. A simplified model of the problem has been devised to compute the flow, the electric field and the surface charge in the meniscus and the jet of an electrospray. The motion of the liquid is assumed to be quasi-unidirectional and described by Cosserat’s approximation for a slender jet. This widely used approximation allows to easily compute multiple configurations and to explore wide ranges of values of the governing parameters, retaining the effects of the viscosity and the inertia of the liquid. Electric fields inside and outside the liquid are coupled and are computed without any simplification using a boundary elements method. The stationary solution of the problem is obtained by means of an iterative method. To explore the parameter space, a solution is first computed for a set of values of the liquid properties, the flow rate and the applied voltage, an then a continuation method is used to find the boundaries of the cone-jet mode domain of existence, where the iterative method ceases to converge. When the inertia of the liquid dominates in the cone-jet transition region, the iterative method ceases to converge for values of the flow rate for which order-of-magnitude estimates first predict charge relaxation effects to be important in the cone and the jet. The electric current computed for values of the flow rate slightly above the minimum for which convergence is obtained seems to agree with estimates worked out for lower flow rates. When viscous forces dominate in the transition region, stationary solutions can be obtained for flow rates significantly smaller than the one for which charge relaxation effects first appear in the transition region. Numerical results obtained for those small values of the flow rate agree with our order of magnitude estimates. Theoretical analyses of two issues that have arisen naturally during the thesis are summarized in two appendices. The first appendix contains a study of the singularity of the electric field that most of the simulations show at the contact line between the liquid and the capillary tube. The electric field near the contact line is analyzed to determine the ranges of geometrical configurations and liquid permittivity where a singularity appears. Further estimates show that this singularity does not entail a failure in the description of the problem and does not affect the solution far from the contact line. The infinite electric stresses that appear at the contact line can be effectively balanced by surface tension. The second appendix contains an analysis of the size and slenderness of the shielded region of a dielectric liquid in the absence of free surface charge. In this region, the external electric field is partially offset by the polarization charge so that the inner electric field is much lower than the outer one. A similar region appears in the estimates when charge relaxation effects are important in the current transfer region.