9 resultados para Plant genetic engineering

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at province and department level in Ecuador and Peru, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The engineering careers models were diverse in Europe, and are adopting now in Spain the Bolonia process for European Universities. Separated from older Universities, that are in part technically active, Civil Engineering (Caminos, Canales y Puertos) started at end of 18th century in Spain adopting the French models of Upper Schools for state civil servants with exam at entry. After 1800 intense wars, to conserve forest regions Ingenieros de Montes appeared as Upper School, and in 1855 also the Ingenieros Agrónomos to push up related techniques and practices. Other Engineers appeared as Upper Schools but more towards private factories. These ES got all adapted Lower Schools of Ingeniero Tecnico. Recently both grew much in number and evolved, linked also to recognized Professions. Spanish society, into European Community, evolved across year 2000, in part highly well, but with severe discordances, that caused severe youth unemployment with 2008-2011 crisis. With Bolonia process high formal changes step in from 2010-11, accepted with intense adaptation. The Lower Schools are changing towards the Upper Schools, and both that have shifted since 2010-11 various 4-years careers (Grado), some included into the precedent Professions, and diverse Masters. Acceptation of them to get students has started relatively well, and will evolve, and acceptation of new grades for employment in Spain, Europe or outside will be essential. Each Grado has now quite rigid curricula and programs, MOODLE was introduced to connect pupils, some specific uses of Personal Computers are taught in each subject. Escuela de Agronomos centre, reorganized with its old name in its precedent buildings at entrance of Campus Moncloa, offers Grados of Agronomic Engineering and Science for various public and private activities for agriculture, Alimentary Engineering for alimentary activities and control, Agro-Environmental Engineering more related to environment activities, and in part Biotechnology also in laboratories in Campus Monte-Gancedo for Biotechnology of Plants and Computational Biotechnology. Curricula include Basics, Engineering, Practices, Visits, English, ?project of end of career?, Stays. Some masters will conduce to specific professional diploma, list includes now Agro-Engineering, Agro-Forestal Biotechnology, Agro and Natural Resources Economy, Complex Physical Systems, Gardening and Landscaping, Rural Genie, Phytogenetic Resources, Plant Genetic Resources, Environmental Technology for Sustainable Agriculture, Technology for Human Development and Cooperation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The European chestnut (Castanea sativa Mill.) is a multipurpose species that has been widely cultivated around the Mediterranean basin since ancient times. New varieties were brought to the Iberian Peninsula during the Roman Empire, which coexist since then with native populations that survived the last glaciation. The relevance of chestnut cultivation has being steadily growing since the Middle Ages, until the rural decline of the past century put a stop to this trend. Forest fires and diseases were also major factors. Chestnut cultivation is gaining momentum again due to its economic (wood, fruits) and ecologic relevance, and represents currently an important asset in many rural areas of Europe. In this Thesis we apply different molecular tools to help improve current management strategies. For this study we have chosen El Bierzo (Castile and Leon, NW Spain), which has a centenary tradition of chestnut cultivation and management, and also presents several unique features from a genetic perspective (next paragraph). Moreover, its nuts are widely appreciated in Spain and abroad for their organoleptic properties. We have focused our experimental work on two major problems faced by breeders and the industry: the lack of a fine-grained genetic characterization and the need for new strategies to control blight disease. To characterize with sufficient detail the genetic diversity and structure of El Bierzo orchards, we analyzed DNA from 169 trees grafted for nut production covering the entire region. We also analyzed 62 nuts from all traditional varieties. El Bierzo constitutes an outstanding scenario to study chestnut genetics and the influence of human management because: (i) it is located at one extreme of the distribution area; (ii) it is a major glacial refuge for the native species; (iii) it has a long tradition of human management (since Roman times, at least); and (iv) its geographical setting ensures an unusual degree of genetic isolation. Thirteen microsatellite markers provided enough informativeness and discrimination power to genotype at the individual level. Together with an unexpected level of genetic variability, we found evidence of genetic structure, with three major gene pools giving rise to the current population. High levels of genetic differentiation between groups supported this organization. Interestingly, genetic structure does not match with spatial boundaries, suggesting that the exchange of material and cultivation practices have strongly influenced natural gene flow. The microsatellite markers selected for this study were also used to classify a set of 62 samples belonging to all traditional varieties. We identified several cases of synonymies and homonymies, evidencing the need to substitute traditional classification systems with new tools for genetic profiling. Management and conservation strategies should also benefit from these tools. The avenue of high-throughput sequencing technologies, combined with the development of bioinformatics tools, have paved the way to study transcriptomes without the need for a reference genome. We took advantage of RNA sequencing and de novo assembly tools to determine the transcriptional landscape of chestnut in response to blight disease. In addition, we have selected a set of candidate genes with high potential for developing resistant varieties via genetic engineering. Our results evidenced a deep transcriptional reprogramming upon fungal infection. The plant hormones ET and JA appear to orchestrate the defensive response. Interestingly, our results also suggest a role for auxins in modulating such response. Many transcription factors were identified in this work that interact with promoters of genes involved in disease resistance. Among these genes, we have conducted a functional characterization of a two major thaumatin-like proteins (TLP) that belongs to the PR5 family. Two genes encoding chestnut cotyledon TLPs have been previously characterized, termed CsTL1 and CsTL2. We substantiate here their protective role against blight disease for the first time, including in silico, in vitro and in vivo evidence. The synergy between TLPs and other antifungal proteins, particularly endo-p-1,3-glucanases, bolsters their interest for future control strategies based on biotechnological approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water stress (WS) slows growth and photosynthesis (An), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (gsw) decreased to two pre-defined values for 24 d, WS was maintained at the target gsw for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (gm) of accounting for the resistance to refixation of CO2. The diffusive limitations to CO2, dominated by the stomata, were the most important constraints to An. Full recovery of An was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of gsw. The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Las temperaturas extremas, la sequía y otros estreses abióticos limitan la producción forestal de forma significativa, causando grandes pérdidas económicas en el sector. Los árboles, al ser organismos sésiles, han desarrollado una serie de estrategias para percibir dichos factores, activando respuestas defensivas apropiadas. Entre ellas ocupa un lugar preeminente la síntesis de proteínas con actividad chaperona molecular. Las chaperonas moleculares interaccionan con proteínas desnaturalizadas total o parcialmente, promoviendo su correcto plegamiento y ensamblaje. Las chaperonas moleculares que se sintetizan de forma predominante en plantas, pero no en otros eucariotas, pertenecen a la familia sHSP (small heat-shock proteins). Se trata de una familia inusualmente compleja y heterogénea, cuyos miembros son de pequeño tamaño (16-42 kD) y poseen un dominio “alfa-cristalina” muy conservado. Estas proteínas están implicadas en protección frente a estrés abiótico mediante la estabilización de proteínas y membranas, si bien su mecanismo de acción se conoce de forma incompleta. A pesar del evidente potencial aplicado de las proteínas sHSP, son muy escasos los estudios realizados hasta el momento con un enfoque netamente biotecnológico. Por otra parte, casi todos ellos se han llevado a cabo en especies herbáceas de interés agronómico o en especies modelo, como Arabidopsis thaliana. De ahí que las sHSP de arbóreas hayan sido mucho menos caracterizadas estructural y funcionalmente, y ello a pesar del interés económico y ecológico de los árboles y de su prolongada exposición vital a múltiples factores estresantes. La presente Tesis Doctoral se centra en el estudio de sHSP de varias especies arbóreas de interés económico. El escrutinio exhaustivo de genotecas de cDNA de órganos vegetativos nos ha permitido identificar y caracterizar los componentes mayoritarios de tallo en dos especies productoras de madera noble: nogal y cerezo. También hemos caracterizado la familia completa en chopo, a partir de su secuencia genómica completa. Mediante expresión heteróloga en bacterias, hemos analizado el efecto protector de estas proteínas in vivo frente a distintos tipos de estrés abiótico, relevantes para el sector productivo. Los resultados demuestran que las proteínas sHSP-CI: (i) aumentan la viabilidad celular de E.coli frente a casi todos estos factores, aplicados de forma individual o combinada; (ii) ejercen un rol estabilizador de las membranas celulares frente a condiciones adversas; (iii) sirven para mejorar la producción de otras proteínas recombinantes de interés comercial. El efecto protector de las proteínas sHSP-CI también ha sido analizado in planta, mediante la expresión ectópica de CsHSP17.5-CI en chopos. En condiciones normales de crecimiento no se han observado diferencias fenotípicas entre las líneas transgénicas y los controles, lo que demuestra que se pueden sobre-expresar estas proteínas sin efectos pleiotrópicos deletéreos. En condiciones de estrés térmico, por el contrario, los chopos transgénicos mostraron menos daños y un mejor crecimiento neto. En línea con lo anterior, las actividades biológicas de varias enzimas resultaron más protegidas frente a la inactivación por calor, corroborando la actividad chaperona propuesta para la familia sHSP y su conexión con la tolerancia al estrés abiótico. En lo que respecta a la multiplicación y propagación de chopo in vitro, una forma de cultivo que comporta estrés para las plantas, todas las líneas transgénicas se comportaron mejor que los controles en términos de producción de biomasa (callos) y regeneración de brotes, incluso en ausencia de estrés térmico. También se comportaron mejor durante su cultivo ex vitro. Estos resultados tienen gran potencial aplicado, dada la recalcitrancia de muchas especies vegetales de interés económico a la micropropagación y a la manipulación in vitro en general. Los resultados derivados de esta Tesis, aparte de aportar datos nuevos sobre el efecto protector de las proteínas sHSP citosólicas mayoritarias (clase CI), demuestran por vez primera que la termotolerancia de los árboles puede ser manipulada racionalmente, incrementando los niveles de sHSP mediante técnicas de ingeniería genética. Su interés aplicado es evidente, especialmente en un escenario de calentamiento global. ABSTRACT Abiotic stress produces considerable economic losses in the forest sector, with extreme temperature and drought being amongst the most relevant factors. As sessile organisms, plants have acquired molecular strategies to detect and recognize stressful factors and activate appropriate responses. A wealth of evidence has correlated such responses with the massive induction of proteins belonging to the molecular chaperone family. Molecular chaperones are proteins which interact with incorrectly folded proteins to help them refold to their native state. In contrast to other eukaryotes, the most prominent stress-induced molecular chaperones of plants belong to the sHSP (small Heat Shock Protein) family. sHSPs are a widespread and diverse class of molecular chaperones that range in size from 16 to 42k Da, and whose members have a highly conserved “alpha-crystallin” domain. sHSP proteins play an important role in abiotic stress tolerance, membrane stabilization and developmental processes. Yet, their mechanism of action remains largely unknown. Despite the applied potential of these proteins, only a few studies have addressed so far the biotechnological implications of this protein family. Most studies have focused on herbaceous species of agronomic interest or on model species such as Arabidopsis thaliana. Hence, sHSP are poorly characterized in long-lived woody species, despite their economic and ecological relevance. This Thesis studies sHSPs from several woody species of economic interest. The most prominent components, namely cytosolic class I sHSPs, have been identified and characterized, either by cDNA library screening (walnut, cherry) or by searching the complete genomic sequence (poplar). Through heterologous bacterial expression, we analyzed the in vivo protective effects of selected components against abiotic stress. Our results demonstrate that sHSP-CI proteins: (i) protect E. coli cells against different stressful conditions, alone or combined; (ii) stabilize cell membranes; (iii) improve the production of other recombinant proteins with commercial interest. The effects of CsHSP17.5-CI overexpression have also been studied in hybrid poplar. Interestingly, the accumulation of this protein does not have any appreciable phenotypic effects under normal growth conditions. However, the transgenic poplar lines showed enhanced net growth and reduced injury under heat-stress conditions compared to vector controls. Biochemical analysis of leaf extracts revealed that important enzyme activities were more protected in such lines against heat-induced inactivation than in control lines, lending further support to the chaperone mode of action proposed for the sHSP family. All transgenic lines showed improved in vitro and ex vitro performance (calli biomass, bud induction, shoot regeneration) compared to controls, even in the absence of thermal stress. Besides providing new insights on the protective role of HSP-CI proteins, our results bolster the notion that heat stress tolerance can be readily manipulated in trees through genetic engineering. The applied value of these results is evident, especially under a global warming scenario.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resulta interesante comprender como microorganismos sencillos como la bacteria Escherichia coli poseen mecanismos no tan simples para responder al entorno en el que está gestionada por complicadas redes de regulación formadas por genes y proteínas, donde cada elemento de la red genética debe tomar parte en armonía, en el momento justo y la cantidad adecuada para dar lugar a la respuesta celular apropiada. La biología sintética es un nuevo área de la biología y la tecnología que fusiona la biolog ía molecular, la ingeniería genética y las herramientas computacionales, para crear sistemas biológicos con funcionalidades novedosas. Los sistemas creados sintéticamente son ya una realidad, y cada vez se acumulan más trabajos alrededor del mundo que muestran su factibilidad. En este campo no solo se hacen pequeñas modificaciones en la información genética, sino que también se diseñan, manipulan e introducen circuitos genéticos a los organismos. Actualmente, se hace un gran esfuerzo para construir circuitos genéticos formados por numerosos genes y caracterizar la interacción de los mismos con otras moléculas, su regulaci ón, expresión y funcionalidad en diferentes organismos. La mayoría de los proyectos de biología sintética que se han desarrollado hasta ahora, se basan en el conocimiento actual del funcionamiento de los organismos vivos. Sin embargo, la información es numerosa y creciente, por lo que se requiere de herramientas computacionales y matem áticas para integrar y hacer manejable esta gran cantidad de información. El simulador de colonias bacterianas GRO posee la capacidad de representar las dinámicas más simples del comportamiento celular, tales como crecimiento, división y comunicación intercelular mediante conjugación, pero carece de la capacidad de simular el comportamiento de la colonia en presencia de un circuito genético. Para ello, se ha creado un nuevo módulo de regulación genética que maneja las interaciones entre genes y proteínas de cada célula ejecutando respuestas celulares específicas. Dado que en la mayoría de los experimentos intervienen colonias del orden de 105 individuos, es necesario un módulo de regulación genética simplificado que permita representar de la forma más precisa posible este proceso en colonias de tales magnitudes. El módulo genético integrado en GRO se basa en una red booleana, en la que un gen puede transitar entre dos estados, on (expresado) o off (reprimido), y cuya transición viene dada por una serie de reglas lógicas.---ABSTRACT---It is interesting to understand how simple organisms such as Escherichia coli do not have simple mechanisms to respond to the environment in which they find themselves. This response is managed by complicated regulatory networks formed by genes and proteins, where each element of the genetic network should take part in harmony, at the right time and with the right amount to give rise to the appropriate cellular response. Synthetic biology is a new area of biology and technology that combines molecular biology, genetic engineering and computational tools to create biological systems with novel features. The synthetically created systems are already a reality, and increasingly accumulate work around the world showing their feasibility. In this field not only minor changes are made in the genetic information but also genetic circuits designed, manipulated and introduced into the organisms. Currently, it takes great effort to build genetic circuits formed by numerous genes and characterize their interaction with other molecules, their regulation, their expression and their function in different organisms. Most synthetic biology projects that have been developed so far are based on the current knowledge of the functioning of living organisms. However, there is a lot of information and it keeps accumulating, so it requires computational and mathematical tools to integrate and manage this wealth of information. The bacterial colonies simulator, GRO, has the ability to represent the simplest dynamics of cell behavior, such as growth, division and intercellular communication by conjugation, but lacks the ability to simulate the behavior of the colony in the presence of a genetic circuit. To this end, a new genetic regulation module that handles interactions between genes and proteins for each cell running specific cellular responses has been created. Since most experiments involve colonies of about 105 individuals, a simplified genetic module which represent cell dynamics as accurately and simply as possible is needed. The integrated genetic GRO module is based on a Boolean network, in which a gene can be in either of two states, on (expressed) or off (repressed), and whose transition is given by a set of logical rules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein engineering of gluten, the exogenous effector in celiac disease, seeking its detoxification by selective chemical modification of toxic epitopes is a very attractive strategy and promising technology when compared to pharmacological treatment or genetic engineering of wheat. Here we present a simple and efficient chemo-enzymatic methodology that decreases celiac disease toxic epitopes of gluten proteins improving its technological value through microbial transglutaminase-mediated transamidation of glutamine with n-butylamine under reducing conditions. First, we found that using low concentrations of amine-nucleophile under non-reducing conditions, the decrease in toxic epitopes is mainly due to transglutaminase-mediated cross-linking. Second, using high amine nucleophile concentrations protein cross-linking is substantially reduced. Third, reducing conditions increase 7-fold the transamidation reaction further decreasing toxic epitopes amount. Fourth, using n-butylamine improves gluten hydrophobicity that strengthens the gluten network. These results open the possibility of tailoring gluten for producing hypoallergenic flours while still taking advantage of the unique viscoelastic properties of gluten.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. The spatial distribution of individual plants within a population and the population’s genetic structure are determined by several factors, like dispersal, reproduction mode or biotic interactions. The role of interspecific interactions in shaping the spatial genetic structure of plant populations remains largely unknown. 2. Species with a common evolutionary history are known to interact more closely with each other than unrelated species due to the greater number of traits they share. We hypothesize that plant interactions may shape the fine genetic structure of closely related congeners. 3. We used spatial statistics (georeferenced design) and molecular techniques (ISSR markers) to understand how two closely related congeners, Thymus vulgaris (widespread species) and T. loscosii (narrow endemic) interact at the local scale. Specific cover, number of individuals of both study species and several community attributes were measured in a 10 × 10 m plot. 4. Both species showed similar levels of genetic variation, but differed in their spatial genetic structure. Thymus vulgaris showed spatial aggregation but no spatial genetic structure, while T. loscosii showed spatial genetic structure (positive genetic autocorrelation) at short distances. The spatial pattern of T. vulgaris’ cover showed significant dissociation with that of T. loscosii. The same was true between the spatial patterns of the cover of T. vulgaris and the abundance of T. loscosii and between the abundance of each species. Most importantly, we found a correlation between the genetic structure of T. loscosii and the abundance of T. vulgaris: T. loscosii plants were genetically more similar when they were surrounded by a similar number of T. vulgaris plants. 5. Synthesis. Our results reveal spatially complex genetic structures of both congeners at small spatial scales. The negative association among the spatial patterns of the two species and the genetic structure found for T. loscosii in relation to the abundance of T. vulgaris indicate that competition between the two species may account for the presence of adapted ecotypes of T. loscosii to the abundance of a competing congeneric species. This suggests that the presence and abundance of close congeners can influence the genetic spatial structure of plant species at fine scales.