4 resultados para Plant ecology--Ontario--Backus Woods.

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al ser la naturaleza objeto de representación artística por el hombre, campos tan diversos como el arte y la ciencia forestal pueden compartir sus orígenes. Los pinos son un género botánico repartido por la cuenca mediterránea capaces de suscitar emociones al haber sido sujetos de lo que fue una innovación cultural. Se propone que los pinos pudieron ser objeto de las primeras representaciones artísticas de los antiguos pobladores de la Península Ibérica. La metodología en la selección de resultados se basa en patrones morfológicos: patrón 1 (plántulas de pino en sus primeras etapas de crecimiento), patrón 2 (dibujos asimilables a ramas de pino) y patrón 3 (dibujos de pinos de gran porte). La presentación de los resultados se estructura en: parte I (referente a las representaciones artísticas estimadas como de pinos en la prehistoria, diferenciando el arte paleolítico del post-paleolítico), parte II (contempla los resultados encontrados en el repertorio iconográfico del arte Íbero y Celtíbero) y parte III (presenta una selección de resultados del arte romano en Hispania). Las diferentes etapas artísticas se articulan comenzando con una introducción, seguida de enfoques multidisciplinares que incluyen una visión histórica del paisaje o de la ecología de la vegetación. A continuación se exponen los resultados de la revisión realizada en cada etapa histórica y el estudio y descripción de las piezas seleccionadas (localización geográfica, datación arqueológica, clasificación genérica de técnica, materiales, dimensiones, iconografía, contexto cultural y procedencia) y por último su discusión en cuanto a su adscripción al género Pinus y a la flora presente en el entorno, caso de ser posible. Esta información se completa con gráficos, diagramas, mapas y tablas situándolas en su contexto arqueológico y cronológico, aportando datos sobre el carácter utilitario, simbólico o ideológico de los pinos, cuya pervivencia se manifiesta en ser protagonistas de gran número de festejos en la España rural de nuestros días. SUMMARY Nature has been represented in paintings since ancient times, which enables fields of study as separate as art and forest science to share a common origin. Pine-tress belong to a botanical genus widely distributed throughout the Mediterranean basin, which are capable of rising emotion and being a representation of what at that time was cultural innovation, subsequently becoming symbols. In this dissertation we hypothesise that pine forest may have been one of the first artistic representations of the ancient dwellers of the Iberian Peninsula. The methodology used for the selection of results is based on morphological patterns, i.e.: Patern 1 (pine seedlings at their first developmental stages), Pattern 2 (drawings associated with pine branches and shoots), and Pattern 3 (paintings of large pine-trees). Results are shown according to the following structure: Part I (relating to prehistoric paintings identified as pines and differentiating Paleolithic from Post-Paleolithic art), Part II (involves the results gathered concerning Iberian and Celtiberian iconographic art) and Part III (including a selection of Roman art in Hispania concerning pine representations). The different artistic periods are linked beginning by an Introduction, followed by a multidisciplinary approach ranging from a historical landscape analysis to plant ecology within a Mediterranean context. Thereafter, results are presented by assessing each historical period and by describing each of the particular art pieces subjected to investigation (geographical location, archaeological date, generic classification of the art technique, materials, dimensions, iconography and cultural context and origin). Finally, the results are discussed according to their ascription to the Pinus genus and when possible, in relation with the surrounding flora. The information provided is complemented with diagrams, maps and tables to enable its understanding within a chronological and archaeological context and providing evidence for the functional, symbolic and ideological character of pines, which are still alive in Spain in the form of many rural feasts with particular kinds of celebrations where this species plays a central role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although tree ferns are an important component of temperate and tropical forests, very little is known about their ecology. Their peculiar biology (e.g., dispersal by spores and two-phase life cycle) makes it difficult to extrapolate current knowledge on the ecology of other tree species to tree ferns. In this paper, we studied the effects of negative density dependence (NDD) and environmental heterogeneity on populations of two abundant tree fern species, Cyathea caracasana and Alsophila engelii, and how these effects change across a successional gradient. Species patterns harbor information on processes such as competition that can be easily revealed using point pattern analysis techniques. However, its detection may be difficult due to the confounded effects of habitat heterogeneity. Here, we mapped three forest plots along a successional gradient in the montane forests of Southern Ecuador. We employed homogeneous and inhomogeneous K and pair correlation functions to quantify the change in the spatial pattern of different size classes and a case-control design to study associations between juvenile and adult tree ferns. Using spatial estimates of the biomass of four functional tree types (short- and long-lived pioneer, shade- and partial shade-tolerant) as covariates, we fitted heterogeneous Poisson models to the point pattern of juvenile and adult tree ferns and explored the existence of habitat dependencies on these patterns. Our study revealed NDD effects for C. caracasana and strong environmental filtering underlying the pattern of A. engelii. We found that adult and juvenile populations of both species responded differently to habitat heterogeneity and in most cases this heterogeneity was associated with the spatial distribution of biomass of the four functional tree types. These findings show the effectiveness of factoring out environmental heterogeneity to avoid confounding factors when studying NDD and demonstrate the usefulness of covariate maps derived from mapped communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The spatial distribution of individual plants within a population and the population’s genetic structure are determined by several factors, like dispersal, reproduction mode or biotic interactions. The role of interspecific interactions in shaping the spatial genetic structure of plant populations remains largely unknown. 2. Species with a common evolutionary history are known to interact more closely with each other than unrelated species due to the greater number of traits they share. We hypothesize that plant interactions may shape the fine genetic structure of closely related congeners. 3. We used spatial statistics (georeferenced design) and molecular techniques (ISSR markers) to understand how two closely related congeners, Thymus vulgaris (widespread species) and T. loscosii (narrow endemic) interact at the local scale. Specific cover, number of individuals of both study species and several community attributes were measured in a 10 × 10 m plot. 4. Both species showed similar levels of genetic variation, but differed in their spatial genetic structure. Thymus vulgaris showed spatial aggregation but no spatial genetic structure, while T. loscosii showed spatial genetic structure (positive genetic autocorrelation) at short distances. The spatial pattern of T. vulgaris’ cover showed significant dissociation with that of T. loscosii. The same was true between the spatial patterns of the cover of T. vulgaris and the abundance of T. loscosii and between the abundance of each species. Most importantly, we found a correlation between the genetic structure of T. loscosii and the abundance of T. vulgaris: T. loscosii plants were genetically more similar when they were surrounded by a similar number of T. vulgaris plants. 5. Synthesis. Our results reveal spatially complex genetic structures of both congeners at small spatial scales. The negative association among the spatial patterns of the two species and the genetic structure found for T. loscosii in relation to the abundance of T. vulgaris indicate that competition between the two species may account for the presence of adapted ecotypes of T. loscosii to the abundance of a competing congeneric species. This suggests that the presence and abundance of close congeners can influence the genetic spatial structure of plant species at fine scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Canopies are complex multilayered structures comprising individual plant crowns exposing a multifaceted surface area to sunlight. Foliage arrangement and properties are the main mediators of canopy functions. The leaves act as light traps whose exposure to sunlight varies with time of the day, date and latitude in a trade-off between photosynthetic light harvesting and excessive or photoinhibitory light avoidance. To date, ecological research based upon leaf sampling has been limited by the available echnology, with which data acquisition becomes labour intensive and time-consuming, given the verwhelming number of leaves involved. 2. In the present study, our goal involved developing a tool capable of easuring a sufficient number of leaves to enable analysis of leaf populations, tree crowns and canopies.We specifically tested whether a cell phone working as a 3Dpointer could yield reliable, repeatable and valid leaf anglemeasurements with a simple gesture. We evaluated the accuracy of this method under controlled conditions, using a 3D digitizer, and we compared performance in the field with the methods commonly used. We presented an equation to estimate the potential proportion of the leaf exposed to direct sunlight (SAL) at any given time and compared the results with those obtained bymeans of a graphicalmethod. 3. We found a strong and highly significant correlation between the graphical methods and the equation presented. The calibration process showed a strong correlation between the results derived from the two methods with amean relative difference below 10%. Themean relative difference in calculation of instantaneous exposure was below 5%. Our device performed equally well in diverse locations, in which we characterized over 700 leaves in a single day. 4. The newmethod, involving the use of a cell phone, ismuchmore effective than the traditionalmethods or digitizers when the goal is to scale up from leaf position to performance of leaf populations, tree crowns or canopies. Our methodology constitutes an affordable and valuable tool within which to frame a wide range of ecological hypotheses and to support canopy modelling approaches.