6 resultados para Pilha de combustível de membrana de permuta protónica (PEM)
em Universidad Politécnica de Madrid
Resumo:
Uno de los principales retos de la sociedad actual es la evolución de sectores como el energético y el de la automoción a un modelo sostenible, responsable con el medio ambiente y con la salud de los ciudadanos. Una de las posibles alternativas, es la célula de combustible de hidrógeno, que transforma la energía química del combustible (hidrógeno) en corriente continua de forma limpia y eficiente. De entre todos los tipos de célula, gana especial relevancia la célula de membrana polimérica (PEM), que por sus características de peso, temperatura de trabajo y simplicidad; se presenta como una gran alternativa para el sector de la automoción entre otros. Por ello, el objetivo de este trabajo es ahondar en el conocimiento de la célula de combustible PEM. Se estudiarán los fundamentos teóricos que permitan comprender su funcionamiento, el papel de cada uno de los elementos de la célula y cómo varían sus características el funcionamiento general de la misma. También se estudiará la caracterización eléctrica, por su papel crucial en la evaluación del desempeño de la célula y para la comparación de modificaciones introducidas en ella. Además, se realizará una aplicación práctica en colaboración con los proyectos de fin de máster y doctorado de otros estudiantes del Politécnico de Milán, para implementar las técnicas aprendidas de caracterización eléctrica en una célula trabajando con diferentes tipos de láminas de difusión gaseosa (GDL y GDM) preparadas por estudiantes. Los resultados de la caracterización, permitirán analizar las virtudes de dos modificaciones en la composición clásica de la célula, con el fin de mejorar la gestión del agua que se produce en la zona catódica durante la reacción, disminuyendo los problemas de difusión a altas densidades de corriente y la consiguiente pérdida de potencial en la célula. Las dos modificaciones son: la inclusión de una lámina de difusión microporosa (MPL) a la lámina macroporosa habitual (GDL), y el uso de diversos polímeros con mejores propiedades hidrófobas en el tratamiento de dichas láminas de difusión. La célula de combustible es un sistema de conversión de energía electroquímico, en el que se trasforma de forma directa, energía química en energía eléctrica de corriente continua. En el catalizador de platino del ánodo se produce la descomposición de los átomos de hidrógeno. Los protones resultantes viajarán a través de la membrana de conducción protónica (que hace las veces de electrolito y supone el alma de la célula PEM) hasta el cátodo. Los electrones, en cambio, alcanzarán el cátodo a través de un circuito externo produciendo trabajo. Una vez ambas especies se encuentran en el cátodo, y junto con el oxígeno que sirve como oxidante, se completa la reacción, produciéndose agua. El estudio termodinámico de la reacción que se produce en la célula nos permite calcular el trabajo eléctrico teórico producido por el movimiento de cargas a través del circuito externo, y con él, una expresión del potencial teórico que presentará la célula, que variará con la temperatura y la presión; Para una temperatura de 25°C, este potencial teórico es de 1.23 V, sin embargo, el potencial de la célula en funcionamiento nunca presenta este valor. El alejamiento del comportamiento teórico se debe, principalmente, a tres tipos de pérdidas bien diferenciadas: Pérdidas de activación: El potencial teórico representa la tensión de equilibrio, para la que no se produce un intercambio neto de corriente. Por tanto, la diferencia de potencial entre el ánodo y el cátodo debe alejarse del valor teórico para obtener una corriente neta a través del circuito externo. Esta diferencia con el potencial teórico se denomina polarización de activación, y conlleva una pérdida de tensión en la célula. Así pues estas pérdidas tienen su origen en la cinética de la reacción electroquímica. Pérdidas óhmicas: Es una suma de las resistencias eléctricas en los elementos conductores, la resistencia en la membrana electrolítica a la conducción iónica y las resistencias de contacto. Pérdidas por concentración: Estas pérdidas se producen cuando los gases reactivos en el área activa son consumidos en un tiempo menor del necesario para ser repuestos. Este fenómeno es crítico a altas densidades de corriente, cuando los gases reactivos son consumidos con gran velocidad, por lo que el descenso de concentración de reactivos en los electrodos puede provocar una caída súbita de la tensión de la célula. La densidad de corriente para la cual se produce esta caída de potencial en unas condiciones determinadas se denomina densidad límite de corriente. Así pues, estas pérdidas tienen su origen en los límites de difusión de las especies reactivas a través de la célula. Además de la membrana electrolítica y el catalizador, en la célula de combustible podemos encontrar como principales componentes los platos bipolares, encargados de conectar la célula eléctricamente con el exterior y de introducir los gases reactivos a través de sus conductos; y las láminas difusivas, que conectan eléctricamente el catalizador con los platos bipolares y sirven para distribuir los gases reactivos de forma que lleguen a todo el área activa, y para evacuar el exceso de agua que se acumula en el área activa.La lámina difusiva, más conocida como GDL, será el argumento principal de nuestro estudio. Está conformada por un tejido de fibra de carbono macroporosa, que asegure el contacto eléctrico entre el catalizador y el plato bipolar, y es tratada con polímeros para proporcionarle propiedades hidrófobas que le ayuden en la evacuación de agua. La evacuación del agua es tan importante, especialmente en el cátodo, porque de lo contrario, la cantidad de agua generada por la reacción electroquímica, sumada a la humedad que portan los gases, puede provocar inundaciones en la zona activa del electrodo. Debido a las inundaciones, el agua obstruye los poros del GDL, dificultando la difusión de especies gaseosas y aumentando las pérdidas por concentración. Por otra parte, si demasiada agua se evacúa del electrodo, se puede producir un aumento de las pérdidas óhmicas, ya que la conductividad protónica de la membrana polimérica, es directamente proporcional a su nivel de humidificación. Con el fin de mejorar la gestión del agua de la célula de combustible, se ha añadido una capa microporosa denominada MPL al lado activo del GDL. Esta capa, constituida por una mezcla de negro de carbón con el polímero hidrófobo como aglutinante, otorga al GDL un mejor acabado superficial que reduce la resistencia de contacto con el electrodo, además la reducción del tamaño de las gotas de agua al pasar por el MPL mejora la difusión gaseosa por la disminución de obstrucciones en el GDL. Es importante tener cuidado en los tratamientos de hidrofobización de estos dos elementos, ya que, cantidades excesivas de polímero hidrófobo podrían reducir demasiado el tamaño de los poros, además de aumentar las pérdidas resistivas por su marcado carácter dieléctrico. Para el correcto análisis del funcionamiento de una célula de combustible, la herramienta fundamental es su caracterización eléctrica a partir de la curva de polarización. Esta curva representa la evolución del potencial de la célula respecto de la densidad de corriente, y su forma viene determinada principalmente por la contribución de las tres pérdidas mencionadas anteriormente. Junto con la curva de polarización, en ocasiones se presenta la curva de densidad de potencia, que se obtiene a partir de la misma. De forma complementaria a la curva de polarización, se puede realizar el estudio del circuito equivalente de la célula de combustible. Este consiste en un circuito eléctrico sencillo, que simula las caídas de potencial en la célula a través de elementos como resistencias y capacitancias. Estos elementos representas pérdidas y limitaciones en los procesos químicos y físicos en la célula. Para la obtención de este circuito equivalente, se realiza una espectroscopia de impedancia electroquímica (en adelante EIS), que consiste en la identificación de los diferentes elementos a partir de los espectros de impedancia, resultantes de introducir señales de corriente alternas sinusoidales de frecuencia variable en la célula y observar la respuesta en la tensión. En la siguiente imagen se puede observar un ejemplo de la identificación de los parámetros del circuito equivalente en un espectro de impedancia. Al final del trabajo, se han realizado dos aplicaciones prácticas para comprobar la influencia de las características hidrófobas y morfológicas de los medios difusores en la gestión del agua en el cátodo y, por tanto, en el resultado eléctrico de la célula; y como aplicación práctica de las técnicas de construcción y análisis de las curvas de polarización y potencia y de la espectroscopia de impedancia electroquímica. El primer estudio práctico ha consistido en comprobar los beneficios de la inclusión de un MPL al GDL. Para ello se han caracterizado células funcionando con GDL y GDM (GDL+MPL) tratados con dos tipos diferentes de polímeros, PTFE y PFPE. Además se han realizado las pruebas para diferentes condiciones de funcionamiento, a saber, temperaturas de 60 y 80°C y niveles de humidificación relativa de los gases reactivos de 80%-60% y 80%- 100% (A-C). Se ha comprobado con las curvas de polarización y potencia, cómo la inclusión de un MPL en el lado activo del GDL reporta una mejora del funcionamiento de trabajo en todas las condiciones estudiadas. Esta mejora se hace más patente para altas densidades de corriente, cuando la gestión del agua resulta más crítica, y a bajas temperaturas ya que un menor porcentaje del agua producida se encuentra en estado de vapor, produciéndose inundaciones con mayor facilidad. El segundo estudio realizado trata de la influencia del agente hidrofobizante utilizado en los GDMs. Se pretende comprobar si algún otro polímero de los estudiados, mejora las prestaciones del comúnmente utilizado PTFE. Para ello se han caracterizado células trabajando en diferentes condiciones de trabajo (análogas a las del primer estudio) con GDMs tratados con PTFE, PFPE, FEP y PFA. Tras el análisis de las curvas de polarización y potencia, se observa un gran comportamiento del FEP para todas las condiciones de trabajo, aumentando el potencial de la célula para cada densidad de corriente respecto al PTFE y retrasando la densidad de corriente límite. El PFPE también demuestra un gran aumento del potencial y la densidad de potencia de la célula, aunque presenta mayores problemas de difusión a altas densidades de corriente. Los resultados del PFA evidencian sus problemas en la gestión del agua a altas densidades de corriente, especialmente para altas temperaturas. El análisis de los espectros de impedancia obtenidos con la EIS confirma los resultados de las curvas de polarización y evidencian que la mejor alternativa al PTFE para el tratamiento del GDM es el FEP, que por sus mejores características hidrófobas reduce las pérdidas por concentración con una mejor gestión del agua en el cátodo.
Resumo:
Este trabajo presenta un estudio sobre el funcionamiento y aplicaciones de las células de combustible de membrana tipo PEM, o de intercambio de protones, alimentadas con hidrógeno puro y oxigeno obtenido de aire comprimido. Una vez evaluado el proceso de dichas células y las variables que intervienen en el mismo, como presión, humedad y temperatura, se presenta una variedad de métodos para la instrumentación de tales variables así como métodos y sistemas para la estabilidad y control de las mismas, en torno a los valores óptimos para una mayor eficacia en el proceso. Tomando como variable principal a controlar la temperatura del proceso, y exponiendo los valores concretos en torno a 80 grados centígrados entre los que debe situarse, es realizado un modelo del proceso de calentamiento y evolución de la temperatura en función de la potencia del calentador resistivo en el dominio de la frecuencia compleja, y a su vez implementado un sistema de medición mediante sensores termopar de tipo K de respuesta casi lineal. La señal medida por los sensores es amplificada de manera diferencial mediante amplificadores de instrumentación INA2126, y es desarrollado un algoritmo de corrección de error de unión fría (error producido por la inclusión de nuevos metales del conector en el efecto termopar). Son incluidos los datos de test referentes al sistema de medición de temperatura , incluyendo las desviaciones o error respecto a los valores ideales de medida. Para la adquisición de datos y implementación de algoritmos de control, es utilizado un PC con el software Labview de National Instruments, que permite una programación intuitiva, versátil y visual, y poder realizar interfaces de usuario gráficas simples. La conexión entre el hardware de instrumentación y control de la célula y el PC se realiza mediante un interface de adquisición de datos USB NI 6800 que cuenta con un amplio número de salidas y entradas analógicas. Una vez digitalizadas las muestras de la señal medida, y corregido el error de unión fría anteriormente apuntado, es implementado en dicho software un controlador de tipo PID ( proporcional-integral-derivativo) , que se presenta como uno de los métodos más adecuados por su simplicidad de programación y su eficacia para el control de este tipo de variables. Para la evaluación del comportamiento del sistema son expuestas simulaciones mediante el software Matlab y Simulink determinando por tanto las mejores estrategias para desarrollar el control PID, así como los posibles resultados del proceso. En cuanto al sistema de calentamiento de los fluidos, es empleado un elemento resistor calentador, cuya potencia es controlada mediante un circuito electrónico compuesto por un detector de cruce por cero de la onda AC de alimentación y un sistema formado por un elemento TRIAC y su circuito de accionamiento. De manera análoga se expone el sistema de instrumentación para la presión de los gases en el circuito, variable que oscila en valores próximos a 3 atmosferas, para ello es empleado un sensor de presión con salida en corriente mediante bucle 4-20 mA, y un convertidor simple corriente a tensión para la entrada al sistema de adquisición de datos. Consecuentemente se presenta el esquema y componentes necesarios para la canalización, calentamiento y humidificación de los gases empleados en el proceso así como la situación de los sensores y actuadores. Por último el trabajo expone la relación de algoritmos desarrollados y un apéndice con información relativa al software Labview. ABTRACT This document presents a study about the operation and applications of PEM fuel cells (Proton exchange membrane fuel cells), fed with pure hydrogen and oxygen obtained from compressed air. Having evaluated the process of these cells and the variables involved on it, such as pressure, humidity and temperature, there is a variety of methods for implementing their control and to set up them around optimal values for greater efficiency in the process. Taking as primary process variable the temperature, and exposing its correct values around 80 degrees centigrade, between which must be placed, is carried out a model of the heating process and the temperature evolution related with the resistive heater power on the complex frequency domain, and is implemented a measuring system with thermocouple sensor type K performing a almost linear response. The differential signal measured by the sensor is amplified through INA2126 instrumentation amplifiers, and is developed a cold junction error correction algorithm (error produced by the inclusion of additional metals of connectors on the thermocouple effect). Data from the test concerning the temperature measurement system are included , including deviations or error regarding the ideal values of measurement. For data acquisition and implementation of control algorithms, is used a PC with LabVIEW software from National Instruments, which makes programming intuitive, versatile, visual, and useful to perform simple user interfaces. The connection between the instrumentation and control hardware of the cell and the PC interface is via a USB data acquisition NI 6800 that has a large number of analog inputs and outputs. Once stored the samples of the measured signal, and correct the error noted above junction, is implemented a software controller PID (proportional-integral-derivative), which is presented as one of the best methods for their programming simplicity and effectiveness for the control of such variables. To evaluate the performance of the system are presented simulations using Matlab and Simulink software thereby determining the best strategies to develop PID control, and possible outcomes of the process. As fluid heating system, is employed a heater resistor element whose power is controlled by an electronic circuit comprising a zero crossing detector of the AC power wave and a system consisting of a Triac and its drive circuit. As made with temperature variable it is developed an instrumentation system for gas pressure in the circuit, variable ranging in values around 3 atmospheres, it is employed a pressure sensor with a current output via 4-20 mA loop, and a single current to voltage converter to adequate the input to the data acquisition system. Consequently is developed the scheme and components needed for circulation, heating and humidification of the gases used in the process as well as the location of sensors and actuators. Finally the document presents the list of algorithms and an appendix with information about Labview software.
Resumo:
TIPO DE BUQUE: LNG con tanques tipo membrana. TRIPULACIÓN: 30 personas PESO MUERTO: 32000 Toneladas VELOCIDAD EN PRUEBAS: 17,5 nudos al 90% de la M.C.R, 21 % de margen de mar. PROPULSIÓN: Turbina marina a vapor. Hélice de palas fijas CAPACIDAD DE ALMACENAMIENTO: 4 bodegas con tanques de tipo membrana de capacidad total de 51000 m3 (100 % y –163ºC). Combustible 3000 m3. D.O 250 m3. Agua dulce 200 m3. Agua destilada 200 m3. Aceite 200 m3. EQUIPO DE MANIPULACIÓN DE CARGA: 8 bombas de descarga de 700 m3/h a 150 mcl, 4 bombas de achique de 25 m3/h a 150 mcl CLASIFICACIÓN Y COTA: Bureau Veritas.+I3/3, Liquified Gas Carrier, deep sea, AUT, AUTPORT. REGLAMENTOS Y LIMITACIONES: B.V, SOLAS código gas. OTROS REQUERIMIENTOS: Gas inerte. Generador de nitrógeno. Detección de gases en espacios vacíos y lastres.
Resumo:
El presente Trabajo Fin de Máster pretende llevar a cabo el análisis del comportamiento vibratorio de resonadores de membrana, consistentes en un panel delgado y ligero montado a cierta distancia de un elemento constructivo rígido y pesado. Este tipo de sistemas resonantes son empleados habitualmente como absorbentes de media-baja frecuencia en aplicaciones de acondicionamiento acústico de salas. El análisis hará especial hincapié en la influencia del acoplamiento mecánico-acústico entre la placa vibrante (estructura) y el colchón de aire (fluido) encerrado entre la misma y la pared rígida. En primer lugar, realizaremos el análisis modal experimental del resonador objeto de ensayo a partir de las mediciones de su respuesta vibratoria, con el fin de caracterizar su comportamiento en base a sus primeros modos propios acoplados de flexión. El análisis de las señales vibratorias en el dominio de la frecuencia para la identificación de dicho modos se realizará en el entorno de programación MATLAB, haciendo uso de una herramienta propia que implementa los métodos de cálculo y los algoritmos necesarios para tal fin. Asimismo, simularemos el comportamiento del resonador mediante el método de elementos finitos (FEM), utilizando las aplicaciones ANSYS y SYSNOISE, considerando diferentes condiciones frontera en el modelo generado. Los resultados aquí obtenidos serán de utilidad para complementar aquellos obtenidos de forma experimental a la hora de extraer conclusiones prácticas del análisis realizado. SUMMARY. This Master's Thesis intends to carry out the analysis of the vibratory behaviour of resonance absorbers, consisting of a thin and lightweight panel mounted at a distance from a rigid wall. Such systems are commonly used as sound absorption systems for mid-low frequency in room acoustics applications. The analysis will emphasize the influence of mechanical-acoustic coupling between the vibrating plate (structure) and the air cushion (acoustic element) enclosed behind it. First of all, we are performing the experimental modal analysis of the resonance absorber under test from the vibrational response measurements, in order to characterize its behaviour based on its first bending coupled-modes. The analysis of vibration signals in the frequency domain for the identification of such modes will be made in MATLAB programming environment, using a proprietary tool that implements the calculation methods and algorithms needed for this purpose. Furthermore, we are simulating the behaviour of the resonance absorber applying the Finite Element Method (FEM) – using ANSYS and SYSNOISE applications - considering different boundary conditions in the model created. The results from the simulation will be useful to complement those obtained experimentally when drawing practical conclusions from this analysis.
Resumo:
El presente proyecto consiste en el diseño básico de ingeniería de un tanque aéreo de almacenamiento de gas natural licuado (GNL) de integridad total con tecnología de membrana y con una capacidad neta de almacenamiento de 200 000 m3 a una temperatura de -162ºC y una presión máxima de 15 kPa. El proyecto desarrolla los siguientes puntos: el diseño del tanque interno con tecnología de membrana, dimensionamiento del aislante, diseño del techo suspendido, tanque externo, cúpula de hormigón, cimentación, dimensionamiento de los equipos, Ensayos, puesta en frío, puesta en servicio, planificación de la ejecución del proyecto, recursos empleados, control de la presión, prevención del rollover, coste del tanque y análisis económico del proyecto
Resumo:
La reutilización de efluentes depurados siempre ha sido una opción en lugares con déficit coyuntural o estructural de recursos hídricos, se haya o no procedido a la regulación y planificación de esta práctica. La necesidad se crea a partir de las demandas de una zona, normalmente riego agrícola, que ven un mejor desarrollo de su actividad por contar con este recurso. España es el país de la UE que más caudal reutiliza, y está dentro de los diez primeros a nivel mundial. La regulación de esta práctica por el RD 1620/2007, ayudó a incorporar la reutilización de efluentes depurados a la planificación hidrológica como parte de los programas de medidas, con objeto de mitigar presiones, como son las extracciones de agua superficial y subterránea, o mejoras medioambientales evitando un vertido. El objeto de este trabajo es conocer la situación de la reutilización de efluentes depurados en España, los diferentes escenarios y planteamientos de esta actividad, el desarrollo del marco normativo y su aplicabilidad, junto a los tratamientos que permiten alcanzar los límites de calidad establecidos en la normativa vigente, en función de los distintos usos. Además, se aporta un análisis de costes de las distintas unidades de tratamiento y tipologías de líneas de regeneración, tanto de las utilizadas después de un tratamiento secundario como de otras opciones de depuración, como son los biorreactores de membrana (MBRs). Para el desarrollo de estos objetivos, en primer lugar, se aborda el conocimiento de la situación de la reutilización en España a través de una base de datos diseñada para cubrir todos los aspectos de esta actividad: datos de la estación depuradora de aguas residuales (EDAR), de la estación regeneradora (ERA), caudales depurados, reutilizados, volúmenes utilizados y ubicación de los distintos usos, tipos de líneas de tratamiento, calidades del agua reutilizada, etc. Las principales fuentes de información son las Confederaciones Hidrográficas (CCHH) a través de las concesiones de uso del agua depurada, las entidades de saneamiento y depuración de las distintas comunidades autónomas (CCAA), ayuntamientos, Planes Hidrológicos de Cuenca (PHC) y visitas a las zonas más emblemáticas. Además, se revisan planes y programas con el fin de realizar una retrospectiva de cómo se ha ido consolidando y desarrollando esta práctica en las distintas zonas de la geografía española. Se han inventariado 322 sistemas de reutilización y 216 tratamientos de regeneración siendo el más extendido la filtración mediante filtro arena seguido de una desinfección mediante hipoclorito, aunque este tratamiento se ha ido sustituyendo por un físico-químico con decantación lamelar, filtro de arena y radiación ultravioleta, tratamiento de regeneración convencional (TRC), y otros tratamientos que pueden incluir membranas, tratamientos de regeneración avanzados (TRA), con dosificación de hipoclorito como desinfección residual, para adaptarse al actual marco normativo. El uso más extendido es el agrícola con el 70% del caudal total reutilizado, estimado en 408 hm3, aunque la capacidad de los tratamientos de regeneración esperada para 2015, tras el Plan Nacional de Reutilización de Aguas (PNRA), es tres veces superior. Respecto al desarrollo normativo, en las zonas donde la reutilización ha sido pionera, las administraciones competentes han ido desarrollando diferentes recomendaciones de calidad y manejo de este tipo de agua. El uso agrícola, y en zonas turísticas, el riego de campos de golf, fueron los dos primeros usos que tuvieron algún tipo de recomendación incluso reglamentación. Esta situación inicial, sin una normativa a nivel estatal ni recomendaciones europeas, creó cierta incertidumbre en el avance de la reutilización tanto a nivel de concesiones como de planificación. En la actualidad sigue sin existir una normativa internacional para la reutilización y regeneración de efluentes depurados. Las recomendaciones de referencia a nivel mundial, y en concreto para el uso agrícola, son las de la OMS (Organización Mundial de la Salud) publicadas 1989, con sus posteriores revisiones y ampliaciones (OMS, 2006). Esta norma combina tratamientos básicos de depuración y unas buenas prácticas basadas en diferentes niveles de protección para evitar problemas sanitarios. Otra normativa que ha sido referencia en el desarrollo del marco normativo en países donde se realiza esta práctica, son las recomendaciones dadas por la Agencia Medioambiente Estadunidense (USEPA, 2012) o las publicadas por el Estado de California (Título 22, 2001). Estas normas establecen unos indicadores y valores máximos dónde el tratamiento de regeneración es el responsable de la calidad final en función del uso. Durante 2015, la ISO trabajaba en un documento para el uso urbano donde se muestra tanto los posibles parámetros que habría que controlar como la manera de actuar para evitar posibles riesgos. Por otro lado, la Comisión Europea (CE) viene impulsando desde el 2014 la reutilización de aguas depuradas dentro del marco de la Estrategia Común de Implantación de la Directiva Marco del Agua, y fundamentalmente a través del grupo de trabajo de “Programas de medidas”. Para el desarrollo de esta iniciativa se está planteando sacar para 2016 una guía de recomendaciones que podría venir a completar el marco normativo de los distintos Estados Miembros (EM). El Real Decreto 1620/2007, donde se establece el marco jurídico de la reutilización de efluentes depurados, tiende más a la filosofía implantada por la USEPA, aunque la UE parece más partidaria de una gestión del riesgo, donde se establecen unos niveles de tolerancia y unos puntos de control en función de las condiciones socioeconómicas de los distintos Estados, sin entrar a concretar indicadores, valores máximos o tratamientos. Sin embargo, en la normativa estadounidense se indican una serie de tratamientos de regeneración, mientras que, en la española, se hacen recomendaciones a este respecto en una Guía sin validez legal. Por tanto, queda sin regular los procesos para alcanzar estos estándares de calidad, pudiendo ser éstos no apropiados para esta práctica. Es el caso de la desinfección donde el uso de hipoclorito puede generar subproductos indeseables. En la Guía de recomendaciones para la aplicación del RD, publicada por el Ministerio de Agricultura y Medioambiente (MAGRAMA) en 2010, se aclaran cuestiones frecuentes sobre la aplicación del RD, prescripciones técnicas básicas para los sistemas de reutilización, y buenas prácticas en función del uso. Aun así, el RD sigue teniendo deficiencias en su aplicación siendo necesaria una revisión de la misma, como en las frecuencias de muestreo incluso la omisión de algunos parámetros como huevos de nematodos que se ha demostrado ser inexistentes tras un tratamiento de regeneración convencional. En este sentido, existe una tendencia a nivel mundial a reutilizar las aguas con fines de abastecimiento, incluir indicadores de presencia de virus o protozoos, o incluir ciertas tecnologías como las membranas u oxidaciones avanzadas para afrontar temas como los contaminantes emergentes. Otro de los objetivos de este trabajo es el estudio de tipologías de tratamiento en función de los usos establecidos en el RD 1620/2007 y sus costes asociados, siendo base de lo establecido a este respecto en la Guía y PNRA anteriormente indicados. Las tipologías de tratamiento propuestas se dividen en líneas con capacidad de desalar y las que no cuentan con una unidad de desalación de aguas salobres de ósmosis inversa o electrodiálisis reversible. Se realiza esta división al tener actuaciones en zonas costeras donde el agua de mar entra en los colectores, adquiriendo el agua residual un contenido en sales que es limitante en algunos usos. Para desarrollar este objetivo se han estudiado las unidades de tratamiento más implantadas en ERAs españolas en cuanto a fiabilidad para conseguir determinada calidad y coste, tanto de implantación como de explotación. El TRC, tiene un coste de implantación de 28 a 48 €.m-3.d y de explotación de 0,06 a 0,09 €. m-3, mientras que, si se precisara desalar, este coste se multiplica por diez en la implantación y por cinco en la explotación. En caso de los usos que requieren de TRA, como los domiciliarios o algunos industriales, los costes serían de 185 a 398 €.m-3.d en implantación y de 0,14 a 0,20 €.m-3 en explotación. En la selección de tecnologías de regeneración, la capacidad del tratamiento en relación al coste es un indicador fundamental. Este trabajo aporta curvas de tendencia coste-capacidad que sirven de herramienta de selección frente a otros tratamientos de regeneración de reciente implantación como son los MBR, u otros como la desalación de agua de mar o los trasvases entre cuencas dentro de la planificación hidrológica. En España, el aumento de las necesidades de agua de alta calidad en zonas con recursos escasos, aumento de zonas sensibles como puntos de captación para potables, zonas de baño o zonas de producción piscícola, y en ocasiones, el escaso terreno disponible para la implantación de nuevas plantas depuradoras (EDARs), han convertido a los MBRs, en una opción dentro del marco de la reutilización de aguas depuradas. En este trabajo, se estudia esta tecnología frente a los TRC y TRA, aportando igualmente curvas de tendencia coste-capacidad, e identificando cuando esta opción tecnológica puede ser más competitiva frente a los otros tratamientos de regeneración. Un MBR es un tratamiento de depuración de fangos activos donde el decantador secundario es sustituido por un sistema de membranas de UF o MF. La calidad del efluente, por tanto, es la misma que el de una EDAR seguida de un TRA. Los MBRs aseguran una calidad del efluente para todos los usos establecidos en el RD, incluso dan un efluente que permite ser directamente tratado por las unidades de desalación de OI o EDR. La implantación de esta tecnología en España ha tenido un crecimiento exponencial, pasando de 13 instalaciones de menos de 5.000 m3. d-1 en el 2006, a más de 55 instalaciones en operación o construcción a finales del 2014, seis de ellas con capacidades por encima de los 15.000 m3. d-1. Los sistemas de filtración en los MBR son los que marcan la operación y diseño de este tipo de instalaciones. El sistema más implantado en España es de membrana de fibra hueca (MFH), sobre todo para instalaciones de gran capacidad, destacando Zenon que cuenta con el 57% de la capacidad total instalada. La segunda casa comercial con mayor número de plantas es Kubota, con membranas de configuración placa plana (MPP), que cuenta con el 30 % de la capacidad total instalada. Existen otras casas comerciales implantadas en MBR españoles como son Toray, Huber, Koch o Microdym. En este documento se realiza la descripción de los sistemas de filtración de todas estas casas comerciales, aportando información de sus características, parámetros de diseño y operación más relevantes. El estudio de 14 MBRs ha posibilitado realizar otro de los objetivos de este trabajo, la estimación de los costes de explotación e implantación de este tipo de sistemas frente a otras alternativas de tratamiento de regeneración. En este estudio han participado activamente ACA y ESAMUR, entidades públicas de saneamiento y depuración de Cataluña y Murcia respectivamente, que cuentan con una amplia experiencia en la explotación de este tipo de sistemas. Este documento expone los problemas de operación encontrados y sus posibles soluciones, tanto en la explotación como en los futuros diseños de este tipo de plantas. El trabajo concluye que los MBRs son una opción más para la reutilización de efluentes depurados, siendo ventajosos en costes, tanto de implantación como de explotación, respecto a EDARs seguidas de TRA en capacidades por encima de los 10.000 m3.d-1. ABSTRACT The reuse of treated effluent has always been an option in places where a situational or structural water deficit exists, whether regulatory and/or planning efforts are completed or not. The need arises from the demand of a sector, commonly agricultural irrigation, which benefits of this new resource. Within the EU, Spain is ahead in the annual volume of reclaimed water, and is among the top ten countries at a global scale. The regulation of this practice through the Royal Decree 1620/2007 has helped to incorporate the water reuse to the hydrological plans as a part of the programme of measures to mitigate pressures such as surface or ground water extraction, or environmental improvements preventing discharges. The object of this study is to gain an overview of the state of the water reuse in Spain, the different scenarios and approaches to this activity, the development of the legal framework and its enforceability, together with the treatments that achieve the quality levels according to the current law, broken down by applications. Additionally, a cost analysis of technologies and regeneration treatment lines for water reclamation is performed, whereas the regeneration treatment is located after a wastewater treatment or other options such as membrane bioreactors (MBR). To develop the abovementioned objectives, the state of water reuse in Spain is studied by means of a database designed to encompass all aspects of the activity: data from the wastewater treatment plants (WWTP), from the water reclamation plants (WRP), the use of reclaimed water, treated water and reclaimed water annual volumes and qualities, facilities and applications, geographic references, technologies, regeneration treatment lines, etc. The main data providers are the River Basin authorities, through the concession or authorization for water reuse, (sanitary and wastewater treatment managers from the territorial governments, local governments, Hydrological Plans of the River Basins and field visits to the main water reuse systems. Additionally, a review of different plans and programmes on wastewater treatment or water reuse is done, aiming to put the development and consolidation process of this activity in the different regions of Spain in perspective. An inventory of 322 reuse systems and 216 regeneration treatments has been gathered on the database, where the most extended regeneration treatment line was sand filtration followed by hypochlorite disinfection, even though recently it is being replaced by physical–chemical treatment with a lamella settling system, depth sand filtration, and a disinfection with ultraviolet radiation and hypochlorite as residual disinfectant, named conventional regeneration treatment (CRT), and another treatment that may include a membrane process, named advanced regeneration treatment (ART), to adapt to legal requirements. Agricultural use is the most extended, accumulating 70% of the reclaimed demand, estimated at 408 hm3, even though the expected total capacity of WRPs for 2015, after the implementation of the National Water Reuse Plan (NWRP) is three times higher. According to the development of the water reuse legal framework, there were pioneer areas where competent authorities developed different quality and use recommendations for this new resource. Agricultural use and golf course irrigation in touristic areas were the first two uses with recommendations and even legislation. The initial lack of common legislation for water reuse at a national or European level created some doubts which affected the implementation of water reuse, both from a planning and a licensing point of view. Currently there is still a lack of common international legislation regarding water reuse, technologies and applications. Regarding agricultural use, the model recommendations at a global scale are those set by the World Health Organization published in 1989, and subsequent reviews and extensions about risk prevention (WHO, 2006). These documents combine wastewater treatments with basic regeneration treatments reinforced by good practices based on different levels of protection to avoid deleterious health effects. Another relevant legal reference for this practices has been the Environmental Protection Agency of the US (USEPA, 2012), or those published by the State of California (Title 22, 2001). These establish indicator targets and maximum thresholds where regeneration treatment lines are responsible for the final quality according to the different uses. During 2015, the ISO has worked on a document aimed at urban use, where the possible parameters to be monitored together with risk prevention have been studied. On the other hand, the European Commission has been promoting the reuse of treated effluents within the Common Implementation Strategy of the Water Framework Directive, mainly through the work of the Programme of Measures Working Group. Within this context, the publication of a recommendation guide during 2016 is intended, as a useful tool to fill in the legal gaps of different Member States on the matter. The Royal Decree 1620/2007, where the water reuse regulation is set, resembles the principles of the USEPA more closely, even though the EU shows a tendency to prioritize risk assessment by establishing tolerance levels and thresholds according to socioeconomic conditions of the different countries, without going into details of indicators, maximum thresholds or treatments. In contrast, in the US law, regeneration treatments are indicated, while in the Spanish legislation, the only recommendations to this respect are compiled in a non-compulsory guide. Therefore, there is no regulation on the different treatment lines used to achieve the required quality standards, giving room for inappropriate practices in this respect. This is the case of disinfection, where the use of hypochlorite may produce harmful byproducts. In the recommendation Guide for the application of the Royal Decree (RD), published by the Ministry of Agriculture and Environment (MAGRAMA) in 2010, clarifications of typical issues that may arise from the application of the RD are given, as well as basic technical parameters to consider in reuse setups, or good practices according to final use. Even so, the RD still presents difficulties in its application and requires a review on issues such as the sampling frequency of current quality parameters or even the omission of nematode eggs indicator, which have been shown to be absent after CRT. In this regard, there is a global tendency to employ water reuse for drinking water, including indicators for the presence of viruses and protozoans, or to include certain technologies such as membranes or advanced oxidation processes to tackle problems like emerging pollutants. Another of the objectives of this study is to provide different regeneration treatment lines to meet the quality requirements established in the RD 1620/2007 broken down by applications, and to estimate establishment and operational costs. This proposal has been based on what is established in the above mentioned Guide and NWRP. The proposed treatment typologies are divided in treatment trains with desalination, like reverse osmosis or reversible electrodialisis, and those that lack this treatment for brackish water. This separation is done due to coastal facilities, where sea water may permeate the collecting pipes, rising salt contents in the wastewater, hence limiting certain uses. To develop this objective a study of the most common treatment units set up in Spanish WRPs is conducted in terms of treatment train reliability to obtain an acceptable relationship between the required quality and the capital and operational costs. The CRT has an establishment cost of 28 to 48 €.m-3.d and an operation cost of 0.06 to 0.09 €.m-3, while, if desalination was required, these costs would increase tenfold for implementation and fivefold for operation. In the cases of uses that require ART, such as residential or certain industrial uses, the costs would be of 185 to 398 €.m-3.d for implementation and of 0.14 to 0.20 €.m-3 for operation. When selecting regeneration treatment lines, the relation between treatment capacity and cost is a paramount indicator. This project provides cost-capacity models for regeneration treatment trains. These may serve as a tool when selecting between different options to fulfill water demands with MBR facilities, or others such as sea water desalination plants or inter-basin water transfer into a water planning framework. In Spain, the requirement for high quality water in areas with low resource availability, the increasing number of sensitive zones, such as drinking water extraction, recreational bathing areas, fish protected areas and the lack of available land to set up new WWTPs, have turned MBRs into a suitable option for water reuse. In this work this technology is analyzed in contrast to CRT and ART, providing cost-capacity models, and identifying when and where this treatment option may outcompete other regeneration treatments. An MBR is an activated sludge treatment where the secondary settling is substituted by a membrane system of UF or MF. The quality of the effluent is, therefore, comparable to that of a WWTP followed by an ART. MBRs ensure a sufficient quality level for the requirements of the different uses established in the RD, even producing an effluent that can be directly treated in OI or EDR processes. The implementation of this technology in Spain has grown exponentially, growing from 13 facilities with less than 5000 m3.d-1 in 2006 to above 55 facilities operating by the end of 2014, 6 of them with capacities over 15000 m3.d-1. The membrane filtration systems for MBR are the ones that set the pace of operation and design of this type of facilities. The most widespread system in Spain is the hollow fiber membrane configuration, especially on high flow capacities, being Zenon commercial technology, which mounts up to 57% of the total installed capacity, the main contributor. The next commercial technology according to plant number is Kubota, which uses flat sheet membrane configuration, which mounts up to 30% of the total installed capacity. Other commercial technologies exist within the Spanish MBR context, such as Toray, Huber, Koch or Microdym. In this document an analysis of all of these membrane filtration systems is done, providing information about their characteristics and relevant design and operation parameters. The study of 14 full scale running MBRs has enabled to pursue another of the objectives of this work: the estimation of the implementation and operation costs of this type of systems in contrast to other regeneration alternatives. Active participation of ACA and ESAMUR, public wastewater treatment and reuse entities of Cataluña and Murcia respectively, has helped attaining this objective. A number of typical operative problems and their possible solutions are discussed, both for operation and plant design purposes. The conclusion of this study is that MBRs are another option to consider for water reuse, being advantageous in terms of both implementation and operational costs, when compared with WWTPs followed by ART, when considering flow capacities above 10000 m3.d-1.