5 resultados para Picking
em Universidad Politécnica de Madrid
Resumo:
La Organización Mundial de la Salud (OMS) prevé que para el año 2020, el Daño Cerebral Adquirido (DCA) estará entre las 10 causas más comunes de discapacidad. Estas lesiones, dadas sus consecuencias físicas, sensoriales, cognitivas, emocionales y socioeconómicas, cambian dramáticamente la vida de los pacientes y sus familias. Las nuevas técnicas de intervención precoz y el desarrollo de la medicina intensiva en la atención al DCA han mejorado notablemente la probabilidad de supervivencia. Sin embargo, hoy por hoy, las lesiones cerebrales no tienen ningún tratamiento quirúrgico que tenga por objetivo restablecer la funcionalidad perdida, sino que las terapias rehabilitadoras se dirigen hacia la compensación de los déficits producidos. Uno de los objetivos principales de la neurorrehabilitación es, por tanto, dotar al paciente de la capacidad necesaria para ejecutar las Actividades de Vida Diaria (AVDs) necesarias para desarrollar una vida independiente, siendo fundamentales aquellas en las que la Extremidad Superior (ES) está directamente implicada, dada su gran importancia a la hora de la manipulación de objetos. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma centrado en ofrecer una práctica personalizada, monitorizada y ubicua con una valoración continua de la eficacia y de la eficiencia de los procedimientos y con capacidad de generar conocimientos que impulsen la ruptura del paradigma de actual. Los nuevos objetivos consistirán en minimizar el impacto de las enfermedades que afectan a la capacidad funcional de las personas, disminuir el tiempo de incapacidad y permitir una gestión más eficiente de los recursos. Estos objetivos clínicos, de gran impacto socio-económico, sólo pueden alcanzarse desde una apuesta decidida en nuevas tecnologías, metodologías y algoritmos capaces de ocasionar la ruptura tecnológica necesaria que permita superar las barreras que hasta el momento han impedido la penetración tecnológica en el campo de la rehabilitación de manera universal. De esta forma, los trabajos y resultados alcanzados en la Tesis son los siguientes: 1. Modelado de AVDs: como paso previo a la incorporación de ayudas tecnológicas al proceso rehabilitador, se hace necesaria una primera fase de modelado y formalización del conocimiento asociado a la ejecución de las actividades que se realizan como parte de la terapia. En particular, las tareas más complejas y a su vez con mayor repercusión terapéutica son las AVDs, cuya formalización permitirá disponer de modelos de movimiento sanos que actuarán de referencia para futuros desarrollos tecnológicos dirigidos a personas con DCA. Siguiendo una metodología basada en diagramas de estados UML se han modelado las AVDs 'servir agua de una jarra' y 'coger un botella' 2. Monitorización ubícua del movimiento de la ES: se ha diseñado, desarrollado y validado un sistema de adquisición de movimiento basado en tecnología inercial que mejora las limitaciones de los dispositivos comerciales actuales (coste muy elevado e incapacidad para trabajar en entornos no controlados); los altos coeficientes de correlación y los bajos niveles de error obtenidos en los corregistros llevados a cabo con el sistema comercial BTS SMART-D demuestran la alta precisión del sistema. También se ha realizado un trabajo de investigación exploratorio de un sistema de captura de movimiento de coste muy reducido basado en visión estereoscópica, habiéndose detectado los puntos clave donde se hace necesario incidir desde un punto de vista tecnológico para su incorporación en un entorno real 3. Resolución del Problema Cinemático Inverso (PCI): se ha diseñado, desarrollado y validado una solución al PCI cuando el manipulador se corresponde con una ES humana estudiándose 2 posibles alternativas, una basada en la utilización de un Perceptrón Multicapa (PMC) y otra basada en sistemas Artificial Neuro-Fuzzy Inference Systems (ANFIS). La validación, llevada a cabo utilizando información relativa a los modelos disponibles de AVDs, indica que una solución basada en un PMC con 3 neuronas en la capa de entrada, una capa oculta también de 3 neuronas y una capa de salida con tantas neuronas como Grados de Libertad (GdLs) tenga el modelo de la ES, proporciona resultados, tanto de precisión como de tiempo de cálculo, que la hacen idónea para trabajar en sistemas con requisitos de tiempo real 4. Control inteligente assisted-as-needed: se ha diseñado, desarrollado y validado un algoritmo de control assisted-as-needed para una ortesis robótica con capacidades de actuación anticipatoria de la que existe un prototipo implementado en la actualidad. Los resultados obtenidos demuestran cómo el sistema es capaz de adaptarse al perfil disfuncional del paciente activando la ayuda en instantes anteriores a la ocurrencia de movimientos incorrectos. Esta estrategia implica un aumento en la participación del paciente y, por tanto, en su actividad muscular, fomentándose los procesos la plasticidad cerebral responsables del reaprendizaje o readaptación motora 5. Simuladores robóticos para planificación: se propone la utilización de un simulador robótico assisted-as-needed como herramienta de planificación de sesiones de rehabilitación personalizadas y con un objetivo clínico marcado en las que interviene una ortesis robotizada. Los resultados obtenidos evidencian como, tras la ejecución de ciertos algoritmos sencillos, es posible seleccionar automáticamente una configuración para el algoritmo de control assisted-as-needed que consigue que la ortesis se adapte a los criterios establecidos desde un punto de vista clínico en función del paciente estudiado. Estos resultados invitan a profundizar en el desarrollo de algoritmos más avanzados de selección de parámetros a partir de baterías de simulaciones Estos trabajos han servido para corroborar las hipótesis de investigación planteadas al inicio de la misma, permitiendo, asimismo, la apertura de nuevas líneas de investigación. Summary The World Health Organization (WHO) predicts that by the year 2020, Acquired Brain Injury (ABI) will be among the ten most common ailments. These injuries dramatically change the life of the patients and their families due to their physical, sensory, cognitive, emotional and socio-economic consequences. New techniques of early intervention and the development of intensive ABI care have noticeably improved the survival rate. However, in spite of these advances, brain injuries still have no surgical or pharmacological treatment to re-establish the lost functions. Neurorehabilitation therapies address this problem by restoring, minimizing or compensating the functional alterations in a person disabled because of a nervous system injury. One of the main objectives of Neurorehabilitation is to provide patients with the capacity to perform specific Activities of the Daily Life (ADL) required for an independent life, especially those in which the Upper Limb (UL) is directly involved due to its great importance in manipulating objects within the patients' environment. The incorporation of new technological aids to the neurorehabilitation process tries to reach a new paradigm focused on offering a personalized, monitored and ubiquitous practise with continuous assessment of both the efficacy and the efficiency of the procedures and with the capacity of generating new knowledge. New targets will be to minimize the impact of the sicknesses affecting the functional capabilitiies of the subjects, to decrease the time of the physical handicap and to allow a more efficient resources handling. These targets, of a great socio-economic impact, can only be achieved by means of new technologies and algorithms able to provoke the technological break needed to beat the barriers that are stopping the universal penetration of the technology in the field of rehabilitation. In this way, this PhD Thesis has achieved the following results: 1. ADL Modeling: as a previous step to the incorporation of technological aids to the neurorehabilitation process, it is necessary a first modelling and formalization phase of the knowledge associated to the execution of the activities that are performed as a part of the therapy. In particular, the most complex and therapeutically relevant tasks are the ADLs, whose formalization will produce healthy motion models to be used as a reference for future technological developments. Following a methodology based on UML state-chart diagrams, the ADLs 'serving water from a jar' and 'picking up a bottle' have been modelled 2. Ubiquitous monitoring of the UL movement: it has been designed, developed and validated a motion acquisition system based on inertial technology that improves the limitations of the current devices (high monetary cost and inability of working within uncontrolled environments); the high correlation coefficients and the low error levels obtained throughout several co-registration sessions with the commercial sys- tem BTS SMART-D show the high precision of the system. Besides an exploration of a very low cost stereoscopic vision-based motion capture system has been carried out and the key points where it is necessary to insist from a technological point of view have been detected 3. Inverse Kinematics (IK) problem solving: a solution to the IK problem has been proposed for a manipulator that corresponds to a human UL. This solution has been faced by means of two different alternatives, one based on a Mulilayer Perceptron (MLP) and another based on Artificial Neuro-Fuzzy Inference Systems (ANFIS). The validation of these solutions, carried out using the information regarding the previously generated motion models, indicate that a MLP-based solution, with an architecture consisting in 3 neurons in the input layer, one hidden layer of 3 neurons and an output layer with as many neurons as the number of Degrees of Freedom (DoFs) that the UL model has, is the one that provides the best results both in terms of precission and in terms of processing time, making in idoneous to be integrated within a system with real time restrictions 4. Assisted-as-needed intelligent control: an assisted-as-needed control algorithm with anticipatory actuation capabilities has been designed, developed and validated for a robotic orthosis of which there is an already implemented prototype. Obtained results demonstrate that the control system is able to adapt to the dysfunctional profile of the patient by triggering the assistance right before an incorrect movement is going to take place. This strategy implies an increase in the participation of the patients and in his or her muscle activity, encouraging the neural plasticity processes in charge of the motor learning 5. Planification with a robotic simulator: in this work a robotic simulator is proposed as a planification tool for personalized rehabilitation sessions under a certain clinical criterium. Obtained results indicate that, after the execution of simple parameter selection algorithms, it is possible to automatically choose a specific configuration that makes the assisted-as-needed control algorithm to adapt both to the clinical criteria and to the patient. These results invite researchers to work in the development of more complex parameter selection algorithms departing from simulation batteries Obtained results have been useful to corroborate the hypotheses set out at the beginning of this PhD Thesis. Besides, they have allowed the creation of new research lines in all the studied application fields.
Resumo:
Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a realtime dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: "serving water from a jar" and "picking up a bottle". Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application.
Resumo:
Production of peppers for deshidration (paprika) and for extraction of natural colorants is of great importance in some Mediterranean irrigation areas. In the area of Badajoz (Spain) traditional production, handling and postharvest systems are no longer feasible, although a very good quality and potential market exist for this product. All aspects of mechanized production and handling have been addressed: direct seeding and transplanting, cultivation systems and mechanical harvesting are searched to be adopted in a new production system. A study of size, shape and fruiting pattern of the new varieties was performed. A feasibility study of mechanized harvesting was also made. Results of field testing of different types of harvesters and performance of existing picking heads are presented, some of which yield a feasible solution for the growers of industry peppers in the area. The design, construction and field testing results of a new picking head based on the double-helix principle is presented.
Caracterización dinámica del glaciar Hurd combinando observaciones de campo y simulaciones numéricas
Resumo:
El objetivo fundamental de esta tesis es la caracterización de la morfología y del estado de deformaciones y tensiones del Glaciar Hurd (Isla Livingston, Archipiélago de las Shetland del Sur, Antártida), mediante una combinación de observaciones de campo, registros de georradar y simulaciones numéricas. La morfología y el estado de deformaciones y tensiones actuales son la expresión de la evolución dinámica del glaciar desde tiempos pretéritos hasta recientes, y su análisis nos dará las pautas con las cuales ser capaces de predecir, con el apoyo de las simulaciones numéricas, su evolución futura. El primer aspecto que se aborda es el estudio de las estructuras que pueden observarse en la superficie del glaciar. Describimos las distintas técnicas utilizadas (medidas de campo, fotointerpretación de ortofotografías, análisis geoquímico de cenizas volcánicas, etc.) y presentamos el análisis e interpretación de los resultados morfo-estructurales, así como la correlación, mediante análisis geoquímicos (fluorescencia de rayos X), entre las cenizas volcánicas que extruyen en la superficie del Glaciar Hurd y las del volcán Decepción, origen de las cenizas. Esto nos permite realizar una datación de las mismas como Tefra 1, correspondiente a la erupción de 1970, Tefra 2, correspondiente a las erupciones pre-1829, y el conjunto Tefra 3, asociado a las erupciones más antiguas. En segundo lugar nos ocupamos de las estructuras presentes en el interior del glaciar, cuya herramienta de detección fundamental es el georradar. Identificadas estas estructuras internas, las vinculamos con las observadas en la superficie del glaciar. También hemos estudiado la estructura hidrotérmica del glaciar, obteniendo una serie de evidencias adicionales de su carácter politérmico. Entre éstas se contaban, hasta ahora, las basadas en el valor del parámetro de rigidez de la relación constitutiva del hielo determinada por ajuste de modelos dinámicos y observaciones realizados por Otero (2008) y las basadas en las velocidades de las ondas de radar en el hielo determinadas con el método de punto medio común por Navarro y otros (2009). Las evidencias adicionales que aportamos en esta tesis son: 1) la presencia de estructuras típicas de régimen compresivo en la zona terminal del glaciar y de cizalla en los márgenes del mismo, y 2) la presencia de un estrato superficial de hielo frío (por encima de otro templado) en la zona de ablación de los tres lóbulos del Glaciar Hurd –Sally Rocks, Argentina y Las Palmas–, que alcanzan espesores de 70, 50 y 40 m, respectivamente. Este estrato de hielo frío está probablemente congelado al lecho subglaciar en la zona terminal (Molina y otros, 2007; esta tesis). Por último, nos ocupamos de la simulación numérica de la dinámica glaciar. Presentamos el modelo físico-matemático utilizado, discutimos sus condiciones de contorno y cómo éstas se miden en los trabajos de campo, y describimos el procedimiento de resolución numérica del sistema de ecuaciones parciales del modelo. Presentamos los resultados para los campos de velocidades, deformaciones y tensiones, comparando estos resultados con las estructuras observadas. También incluimos el análisis de las elipses de deformación acumulativa, que proporcionan información sobre las estructuras a las que puede dar lugar la evolución del estado de deformaciones y tensiones a las que se ve sometido el hielo según avanza, lentamente, desde la cabecera hasta la zona terminal del glaciar, con tiempos de tránsito de hasta 1.250 años, recogiendo así la historia de deformaciones en el glaciar. Concluyendo, ponemos de manifiesto en esta tesis que las medidas de campo de las estructuras y niveles de cenizas, las medidas de georradar y las simulaciones numéricas de la dinámica glaciar, realizadas de forma combinada, permiten caracterizar el régimen actual de velocidades, deformaciones y tensiones del glaciar, entender su evolución en el pasado y predecir su evolución futura. ABSTRACT The main objective of this thesis is to characterize the morphology and the state of strains and stresses of Hurd Glacier (Livingston Island, South Shetland Islands archipelago, Antarctica) through a combination of field observations, ground-penetrating radar measurements and numerical simulations. The morphology and the current state of strain and stresses are the expression of the dynamic evolution of the glacier from the past to recent times, and their analysis gives us the guidelines to be able to predict, with the support of numerical simulations, its future evolution. The first subject addressed is the study of structures that can be observed on the glacier surface. We describe the different techniques used (field measurements, photointerpretation of orthophotos, geochemical analysis of volcanic ashes, etc.) and we present the analysis and interpretation of the morpho-structural results, as well as the correlation with geochemical analysis (XRF) between the volcanic ashes extruded to the surface of Hurd Glacier and those of Deception Island volcano, from which the ashes originate. This allows us dating the ashes as Tephra 1, corresponding to the 1970 eruption, Tephra 2, corresponding to the pre-1829 eruptions, and the Tephra 3 group, associated with older eruptions. Secondly we focus on the study of the structures present within the glacier, which are detected with the help of ground-penetrating radar. Once identified, we link these internal structures with those observed on the glacier surface. We also study the hydrothermal structure of the glacier, getting a series of additional evidences of its polythermal structure. Among the evidences available so far, we can mention those based on the value of the stiffness parameter of the constitutive relation of ice, determined by fitting dynamic models to observations, as done by Otero (2008), and those based on the velocity of propagation of the radar waves through the glacier ice, measured using the common midpoint method, as done by Navarro et al. (2009). The additional evidences that we provide in this thesis are: 1) the presence of structures typical of compressive regime in the terminal zone of the glacier, together with shear at its margins, and 2) the presence of a surface layer of cold ice (overlying a layer of temperate ice) in the ablation zone of the three lobes of Hurd Glacier –Sally Rocks, Argentina and Las Palmas–, reaching thicknesses of 70, 50 and 40 m, respectively. This cold layer is probably frozen to the subglacial bed in the terminal zone (Molina and others 2007; this thesis). Finally, we deal with the numerical simulation of glacier dynamics. We present the physical-mathematical model, discuss its boundary conditions and how they are measured in the field work, and describe the method of numerical solution of the model’s partial differential equations. We present the results for the velocity, strain and stress fields, comparing these results with the observed structures. We also include an analysis of the ellipses of cumulative deformation, which provide information about the structures that can result from the evolution of the strain and stress regime of the glacier ice as it moves slowly from the head to the snout of the glacier, with transit times of up to 1,250 years, so picking the history of deformation of the glacier. Summarizing, we show in this thesis that field measurements of structures and ash layers, ground-penetrating radar measurements and numerical simulations of glacier dynamics, performed in combination, allow us to characterize the current regime of velocities, strains and stresses of the glacier, to understand its past evolution and to predict its future evolution.
Resumo:
El presente Trabajo fin Fin de Máster, versa sobre una caracterización preliminar del comportamiento de un robot de tipo industrial, configurado por 4 eslabones y 4 grados de libertad, y sometido a fuerzas de mecanizado en su extremo. El entorno de trabajo planteado es el de plantas de fabricación de piezas de aleaciones de aluminio para automoción. Este tipo de componentes parte de un primer proceso de fundición que saca la pieza en bruto. Para series medias y altas, en función de las propiedades mecánicas y plásticas requeridas y los costes de producción, la inyección a alta presión (HPDC) y la fundición a baja presión (LPC) son las dos tecnologías más usadas en esta primera fase. Para inyección a alta presión, las aleaciones de aluminio más empleadas son, en designación simbólica según norma EN 1706 (entre paréntesis su designación numérica); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). Para baja presión, EN AC AlSi7Mg0,3 (EN AC 42100). En los 3 primeros casos, los límites de Silicio permitidos pueden superan el 10%. En el cuarto caso, es inferior al 10% por lo que, a los efectos de ser sometidas a mecanizados, las piezas fabricadas en aleaciones con Si superior al 10%, se puede considerar que son equivalentes, diferenciándolas de la cuarta. Las tolerancias geométricas y dimensionales conseguibles directamente de fundición, recogidas en normas como ISO 8062 o DIN 1688-1, establecen límites para este proceso. Fuera de esos límites, las garantías en conseguir producciones con los objetivos de ppms aceptados en la actualidad por el mercado, obligan a ir a fases posteriores de mecanizado. Aquellas geometrías que, funcionalmente, necesitan disponer de unas tolerancias geométricas y/o dimensionales definidas acorde a ISO 1101, y no capaces por este proceso inicial de moldeado a presión, deben ser procesadas en una fase posterior en células de mecanizado. En este caso, las tolerancias alcanzables para procesos de arranque de viruta se recogen en normas como ISO 2768. Las células de mecanizado se componen, por lo general, de varios centros de control numérico interrelacionados y comunicados entre sí por robots que manipulan las piezas en proceso de uno a otro. Dichos robots, disponen en su extremo de una pinza utillada para poder coger y soltar las piezas en los útiles de mecanizado, las mesas de intercambio para cambiar la pieza de posición o en utillajes de equipos de medición y prueba, o en cintas de entrada o salida. La repetibilidad es alta, de centésimas incluso, definida según norma ISO 9283. El problema es que, estos rangos de repetibilidad sólo se garantizan si no se hacen esfuerzos o éstos son despreciables (caso de mover piezas). Aunque las inercias de mover piezas a altas velocidades hacen que la trayectoria intermedia tenga poca precisión, al inicio y al final (al coger y dejar pieza, p.e.) se hacen a velocidades relativamente bajas que hacen que el efecto de las fuerzas de inercia sean menores y que permiten garantizar la repetibilidad anteriormente indicada. No ocurre así si se quitara la garra y se intercambia con un cabezal motorizado con una herramienta como broca, mandrino, plato de cuchillas, fresas frontales o tangenciales… Las fuerzas ejercidas de mecanizado generarían unos pares en las uniones tan grandes y tan variables que el control del robot no sería capaz de responder (o no está preparado, en un principio) y generaría una desviación en la trayectoria, realizada a baja velocidad, que desencadenaría en un error de posición (ver norma ISO 5458) no asumible para la funcionalidad deseada. Se podría llegar al caso de que la tolerancia alcanzada por un pretendido proceso más exacto diera una dimensión peor que la que daría el proceso de fundición, en principio con mayor variabilidad dimensional en proceso (y por ende con mayor intervalo de tolerancia garantizable). De hecho, en los CNCs, la precisión es muy elevada, (pudiéndose despreciar en la mayoría de los casos) y no es la responsable de, por ejemplo la tolerancia de posición al taladrar un agujero. Factores como, temperatura de la sala y de la pieza, calidad constructiva de los utillajes y rigidez en el amarre, error en el giro de mesas y de colocación de pieza, si lleva agujeros previos o no, si la herramienta está bien equilibrada y el cono es el adecuado para el tipo de mecanizado… influyen más. Es interesante que, un elemento no específico tan común en una planta industrial, en el entorno anteriormente descrito, como es un robot, el cual no sería necesario añadir por disponer de él ya (y por lo tanto la inversión sería muy pequeña), puede mejorar la cadena de valor disminuyendo el costo de fabricación. Y si se pudiera conjugar que ese robot destinado a tareas de manipulación, en los muchos tiempos de espera que va a disfrutar mientras el CNC arranca viruta, pudiese coger un cabezal y apoyar ese mecanizado; sería doblemente interesante. Por lo tanto, se antoja sugestivo poder conocer su comportamiento e intentar explicar qué sería necesario para llevar esto a cabo, motivo de este trabajo. La arquitectura de robot seleccionada es de tipo SCARA. La búsqueda de un robot cómodo de modelar y de analizar cinemática y dinámicamente, sin limitaciones relevantes en la multifuncionalidad de trabajos solicitados, ha llevado a esta elección, frente a otras arquitecturas como por ejemplo los robots antropomórficos de 6 grados de libertad, muy populares a nivel industrial. Este robot dispone de 3 uniones, de las cuales 2 son de tipo par de revolución (1 grado de libertad cada una) y la tercera es de tipo corredera o par cilíndrico (2 grados de libertad). La primera unión, de tipo par de revolución, sirve para unir el suelo (considerado como eslabón número 1) con el eslabón número 2. La segunda unión, también de ese tipo, une el eslabón número 2 con el eslabón número 3. Estos 2 brazos, pueden describir un movimiento horizontal, en el plano X-Y. El tercer eslabón, está unido al eslabón número 4 por la unión de tipo corredera. El movimiento que puede describir es paralelo al eje Z. El robot es de 4 grados de libertad (4 motores). En relación a los posibles trabajos que puede realizar este tipo de robot, su versatilidad abarca tanto operaciones típicas de manipulación como operaciones de arranque de viruta. Uno de los mecanizados más usuales es el taladrado, por lo cual se elige éste para su modelización y análisis. Dentro del taladrado se elegirá para acotar las fuerzas, taladrado en macizo con broca de diámetro 9 mm. El robot se ha considerado por el momento que tenga comportamiento de sólido rígido, por ser el mayor efecto esperado el de los pares en las uniones. Para modelar el robot se utiliza el método de los sistemas multicuerpos. Dentro de este método existen diversos tipos de formulaciones (p.e. Denavit-Hartenberg). D-H genera una cantidad muy grande de ecuaciones e incógnitas. Esas incógnitas son de difícil comprensión y, para cada posición, hay que detenerse a pensar qué significado tienen. Se ha optado por la formulación de coordenadas naturales. Este sistema utiliza puntos y vectores unitarios para definir la posición de los distintos cuerpos, y permite compartir, cuando es posible y se quiere, para definir los pares cinemáticos y reducir al mismo tiempo el número de variables. Las incógnitas son intuitivas, las ecuaciones de restricción muy sencillas y se reduce considerablemente el número de ecuaciones e incógnitas. Sin embargo, las coordenadas naturales “puras” tienen 2 problemas. El primero, que 2 elementos con un ángulo de 0 o 180 grados, dan lugar a puntos singulares que pueden crear problemas en las ecuaciones de restricción y por lo tanto han de evitarse. El segundo, que tampoco inciden directamente sobre la definición o el origen de los movimientos. Por lo tanto, es muy conveniente complementar esta formulación con ángulos y distancias (coordenadas relativas). Esto da lugar a las coordenadas naturales mixtas, que es la formulación final elegida para este TFM. Las coordenadas naturales mixtas no tienen el problema de los puntos singulares. Y la ventaja más importante reside en su utilidad a la hora de aplicar fuerzas motrices, momentos o evaluar errores. Al incidir sobre la incógnita origen (ángulos o distancias) controla los motores de manera directa. El algoritmo, la simulación y la obtención de resultados se ha programado mediante Matlab. Para realizar el modelo en coordenadas naturales mixtas, es preciso modelar en 2 pasos el robot a estudio. El primer modelo se basa en coordenadas naturales. Para su validación, se plantea una trayectoria definida y se analiza cinemáticamente si el robot satisface el movimiento solicitado, manteniendo su integridad como sistema multicuerpo. Se cuantifican los puntos (en este caso inicial y final) que configuran el robot. Al tratarse de sólidos rígidos, cada eslabón queda definido por sus respectivos puntos inicial y final (que son los más interesantes para la cinemática y la dinámica) y por un vector unitario no colineal a esos 2 puntos. Los vectores unitarios se colocan en los lugares en los que se tenga un eje de rotación o cuando se desee obtener información de un ángulo. No son necesarios vectores unitarios para medir distancias. Tampoco tienen por qué coincidir los grados de libertad con el número de vectores unitarios. Las longitudes de cada eslabón quedan definidas como constantes geométricas. Se establecen las restricciones que definen la naturaleza del robot y las relaciones entre los diferentes elementos y su entorno. La trayectoria se genera por una nube de puntos continua, definidos en coordenadas independientes. Cada conjunto de coordenadas independientes define, en un instante concreto, una posición y postura de robot determinada. Para conocerla, es necesario saber qué coordenadas dependientes hay en ese instante, y se obtienen resolviendo por el método de Newton-Rhapson las ecuaciones de restricción en función de las coordenadas independientes. El motivo de hacerlo así es porque las coordenadas dependientes deben satisfacer las restricciones, cosa que no ocurre con las coordenadas independientes. Cuando la validez del modelo se ha probado (primera validación), se pasa al modelo 2. El modelo número 2, incorpora a las coordenadas naturales del modelo número 1, las coordenadas relativas en forma de ángulos en los pares de revolución (3 ángulos; ϕ1, ϕ 2 y ϕ3) y distancias en los pares prismáticos (1 distancia; s). Estas coordenadas relativas pasan a ser las nuevas coordenadas independientes (sustituyendo a las coordenadas independientes cartesianas del modelo primero, que eran coordenadas naturales). Es necesario revisar si el sistema de vectores unitarios del modelo 1 es suficiente o no. Para este caso concreto, se han necesitado añadir 1 vector unitario adicional con objeto de que los ángulos queden perfectamente determinados con las correspondientes ecuaciones de producto escalar y/o vectorial. Las restricciones habrán de ser incrementadas en, al menos, 4 ecuaciones; una por cada nueva incógnita. La validación del modelo número 2, tiene 2 fases. La primera, al igual que se hizo en el modelo número 1, a través del análisis cinemático del comportamiento con una trayectoria definida. Podrían obtenerse del modelo 2 en este análisis, velocidades y aceleraciones, pero no son necesarios. Tan sólo interesan los movimientos o desplazamientos finitos. Comprobada la coherencia de movimientos (segunda validación), se pasa a analizar cinemáticamente el comportamiento con trayectorias interpoladas. El análisis cinemático con trayectorias interpoladas, trabaja con un número mínimo de 3 puntos máster. En este caso se han elegido 3; punto inicial, punto intermedio y punto final. El número de interpolaciones con el que se actúa es de 50 interpolaciones en cada tramo (cada 2 puntos máster hay un tramo), resultando un total de 100 interpolaciones. El método de interpolación utilizado es el de splines cúbicas con condición de aceleración inicial y final constantes, que genera las coordenadas independientes de los puntos interpolados de cada tramo. Las coordenadas dependientes se obtienen resolviendo las ecuaciones de restricción no lineales con el método de Newton-Rhapson. El método de las splines cúbicas es muy continuo, por lo que si se desea modelar una trayectoria en el que haya al menos 2 movimientos claramente diferenciados, es preciso hacerlo en 2 tramos y unirlos posteriormente. Sería el caso en el que alguno de los motores se desee expresamente que esté parado durante el primer movimiento y otro distinto lo esté durante el segundo movimiento (y así sucesivamente). Obtenido el movimiento, se calculan, también mediante fórmulas de diferenciación numérica, las velocidades y aceleraciones independientes. El proceso es análogo al anteriormente explicado, recordando la condición impuesta de que la aceleración en el instante t= 0 y en instante t= final, se ha tomado como 0. Las velocidades y aceleraciones dependientes se calculan resolviendo las correspondientes derivadas de las ecuaciones de restricción. Se comprueba, de nuevo, en una tercera validación del modelo, la coherencia del movimiento interpolado. La dinámica inversa calcula, para un movimiento definido -conocidas la posición, velocidad y la aceleración en cada instante de tiempo-, y conocidas las fuerzas externas que actúan (por ejemplo el peso); qué fuerzas hay que aplicar en los motores (donde hay control) para que se obtenga el citado movimiento. En la dinámica inversa, cada instante del tiempo es independiente de los demás y tiene una posición, una velocidad y una aceleración y unas fuerzas conocidas. En este caso concreto, se desean aplicar, de momento, sólo las fuerzas debidas al peso, aunque se podrían haber incorporado fuerzas de otra naturaleza si se hubiese deseado. Las posiciones, velocidades y aceleraciones, proceden del cálculo cinemático. El efecto inercial de las fuerzas tenidas en cuenta (el peso) es calculado. Como resultado final del análisis dinámico inverso, se obtienen los pares que han de ejercer los cuatro motores para replicar el movimiento prescrito con las fuerzas que estaban actuando. La cuarta validación del modelo consiste en confirmar que el movimiento obtenido por aplicar los pares obtenidos en la dinámica inversa, coinciden con el obtenido en el análisis cinemático (movimiento teórico). Para ello, es necesario acudir a la dinámica directa. La dinámica directa se encarga de calcular el movimiento del robot, resultante de aplicar unos pares en motores y unas fuerzas en el robot. Por lo tanto, el movimiento real resultante, al no haber cambiado ninguna condición de las obtenidas en la dinámica inversa (pares de motor y fuerzas inerciales debidas al peso de los eslabones) ha de ser el mismo al movimiento teórico. Siendo así, se considera que el robot está listo para trabajar. Si se introduce una fuerza exterior de mecanizado no contemplada en la dinámica inversa y se asigna en los motores los mismos pares resultantes de la resolución del problema dinámico inverso, el movimiento real obtenido no es igual al movimiento teórico. El control de lazo cerrado se basa en ir comparando el movimiento real con el deseado e introducir las correcciones necesarias para minimizar o anular las diferencias. Se aplican ganancias en forma de correcciones en posición y/o velocidad para eliminar esas diferencias. Se evalúa el error de posición como la diferencia, en cada punto, entre el movimiento teórico deseado en el análisis cinemático y el movimiento real obtenido para cada fuerza de mecanizado y una ganancia concreta. Finalmente, se mapea el error de posición obtenido para cada fuerza de mecanizado y las diferentes ganancias previstas, graficando la mejor precisión que puede dar el robot para cada operación que se le requiere, y en qué condiciones. -------------- This Master´s Thesis deals with a preliminary characterization of the behaviour for an industrial robot, configured with 4 elements and 4 degrees of freedoms, and subjected to machining forces at its end. Proposed working conditions are those typical from manufacturing plants with aluminium alloys for automotive industry. This type of components comes from a first casting process that produces rough parts. For medium and high volumes, high pressure die casting (HPDC) and low pressure die casting (LPC) are the most used technologies in this first phase. For high pressure die casting processes, most used aluminium alloys are, in simbolic designation according EN 1706 standard (between brackets, its numerical designation); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). For low pressure, EN AC AlSi7Mg0,3 (EN AC 42100). For the 3 first alloys, Si allowed limits can exceed 10% content. Fourth alloy has admisible limits under 10% Si. That means, from the point of view of machining, that components made of alloys with Si content above 10% can be considered as equivalent, and the fourth one must be studied separately. Geometrical and dimensional tolerances directly achievables from casting, gathered in standards such as ISO 8062 or DIN 1688-1, establish a limit for this process. Out from those limits, guarantees to achieve batches with objetive ppms currently accepted by market, force to go to subsequent machining process. Those geometries that functionally require a geometrical and/or dimensional tolerance defined according ISO 1101, not capable with initial moulding process, must be obtained afterwards in a machining phase with machining cells. In this case, tolerances achievables with cutting processes are gathered in standards such as ISO 2768. In general terms, machining cells contain several CNCs that they are interrelated and connected by robots that handle parts in process among them. Those robots have at their end a gripper in order to take/remove parts in machining fixtures, in interchange tables to modify position of part, in measurement and control tooling devices, or in entrance/exit conveyors. Repeatibility for robot is tight, even few hundredths of mm, defined according ISO 9283. Problem is like this; those repeatibilty ranks are only guaranteed when there are no stresses or they are not significant (f.e. due to only movement of parts). Although inertias due to moving parts at a high speed make that intermediate paths have little accuracy, at the beginning and at the end of trajectories (f.e, when picking part or leaving it) movement is made with very slow speeds that make lower the effect of inertias forces and allow to achieve repeatibility before mentioned. It does not happens the same if gripper is removed and it is exchanged by an spindle with a machining tool such as a drilling tool, a pcd boring tool, a face or a tangential milling cutter… Forces due to machining would create such big and variable torques in joints that control from the robot would not be able to react (or it is not prepared in principle) and would produce a deviation in working trajectory, made at a low speed, that would trigger a position error (see ISO 5458 standard) not assumable for requested function. Then it could be possible that tolerance achieved by a more exact expected process would turn out into a worst dimension than the one that could be achieved with casting process, in principle with a larger dimensional variability in process (and hence with a larger tolerance range reachable). As a matter of fact, accuracy is very tight in CNC, (its influence can be ignored in most cases) and it is not the responsible of, for example position tolerance when drilling a hole. Factors as, room and part temperature, manufacturing quality of machining fixtures, stiffness at clamping system, rotating error in 4th axis and part positioning error, if there are previous holes, if machining tool is properly balanced, if shank is suitable for that machining type… have more influence. It is interesting to know that, a non specific element as common, at a manufacturing plant in the enviroment above described, as a robot (not needed to be added, therefore with an additional minimum investment), can improve value chain decreasing manufacturing costs. And when it would be possible to combine that the robot dedicated to handling works could support CNCs´ works in its many waiting time while CNCs cut, and could take an spindle and help to cut; it would be double interesting. So according to all this, it would be interesting to be able to know its behaviour and try to explain what would be necessary to make this possible, reason of this work. Selected robot architecture is SCARA type. The search for a robot easy to be modeled and kinematically and dinamically analyzed, without significant limits in the multifunctionality of requested operations, has lead to this choice. Due to that, other very popular architectures in the industry, f.e. 6 DOFs anthropomorphic robots, have been discarded. This robot has 3 joints, 2 of them are revolute joints (1 DOF each one) and the third one is a cylindrical joint (2 DOFs). The first joint, a revolute one, is used to join floor (body 1) with body 2. The second one, a revolute joint too, joins body 2 with body 3. These 2 bodies can move horizontally in X-Y plane. Body 3 is linked to body 4 with a cylindrical joint. Movement that can be made is paralell to Z axis. The robt has 4 degrees of freedom (4 motors). Regarding potential works that this type of robot can make, its versatility covers either typical handling operations or cutting operations. One of the most common machinings is to drill. That is the reason why it has been chosen for the model and analysis. Within drilling, in order to enclose spectrum force, a typical solid drilling with 9 mm diameter. The robot is considered, at the moment, to have a behaviour as rigid body, as biggest expected influence is the one due to torques at joints. In order to modelize robot, it is used multibodies system method. There are under this heading different sorts of formulations (f.e. Denavit-Hartenberg). D-H creates a great amount of equations and unknown quantities. Those unknown quatities are of a difficult understanding and, for each position, one must stop to think about which meaning they have. The choice made is therefore one of formulation in natural coordinates. This system uses points and unit vectors to define position of each different elements, and allow to share, when it is possible and wished, to define kinematic torques and reduce number of variables at the same time. Unknown quantities are intuitive, constrain equations are easy and number of equations and variables are strongly reduced. However, “pure” natural coordinates suffer 2 problems. The first one is that 2 elements with an angle of 0° or 180°, give rise to singular positions that can create problems in constrain equations and therefore they must be avoided. The second problem is that they do not work directly over the definition or the origin of movements. Given that, it is highly recommended to complement this formulation with angles and distances (relative coordinates). This leads to mixed natural coordinates, and they are the final formulation chosen for this MTh. Mixed natural coordinates have not the problem of singular positions. And the most important advantage lies in their usefulness when applying driving forces, torques or evaluating errors. As they influence directly over origin variable (angles or distances), they control motors directly. The algorithm, simulation and obtaining of results has been programmed with Matlab. To design the model in mixed natural coordinates, it is necessary to model the robot to be studied in 2 steps. The first model is based in natural coordinates. To validate it, it is raised a defined trajectory and it is kinematically analyzed if robot fulfils requested movement, keeping its integrity as multibody system. The points (in this case starting and ending points) that configure the robot are quantified. As the elements are considered as rigid bodies, each of them is defined by its respectively starting and ending point (those points are the most interesting ones from the point of view of kinematics and dynamics) and by a non-colinear unit vector to those points. Unit vectors are placed where there is a rotating axis or when it is needed information of an angle. Unit vectors are not needed to measure distances. Neither DOFs must coincide with the number of unit vectors. Lengths of each arm are defined as geometrical constants. The constrains that define the nature of the robot and relationships among different elements and its enviroment are set. Path is generated by a cloud of continuous points, defined in independent coordinates. Each group of independent coordinates define, in an specific instant, a defined position and posture for the robot. In order to know it, it is needed to know which dependent coordinates there are in that instant, and they are obtained solving the constraint equations with Newton-Rhapson method according to independent coordinates. The reason to make it like this is because dependent coordinates must meet constraints, and this is not the case with independent coordinates. When suitability of model is checked (first approval), it is given next step to model 2. Model 2 adds to natural coordinates from model 1, the relative coordinates in the shape of angles in revoluting torques (3 angles; ϕ1, ϕ 2 and ϕ3) and distances in prismatic torques (1 distance; s). These relative coordinates become the new independent coordinates (replacing to cartesian independent coordinates from model 1, that they were natural coordinates). It is needed to review if unit vector system from model 1 is enough or not . For this specific case, it was necessary to add 1 additional unit vector to define perfectly angles with their related equations of dot and/or cross product. Constrains must be increased in, at least, 4 equations; one per each new variable. The approval of model 2 has two phases. The first one, same as made with model 1, through kinematic analysis of behaviour with a defined path. During this analysis, it could be obtained from model 2, velocities and accelerations, but they are not needed. They are only interesting movements and finite displacements. Once that the consistence of movements has been checked (second approval), it comes when the behaviour with interpolated trajectories must be kinematically analyzed. Kinematic analysis with interpolated trajectories work with a minimum number of 3 master points. In this case, 3 points have been chosen; starting point, middle point and ending point. The number of interpolations has been of 50 ones in each strecht (each 2 master points there is an strecht), turning into a total of 100 interpolations. The interpolation method used is the cubic splines one with condition of constant acceleration both at the starting and at the ending point. This method creates the independent coordinates of interpolated points of each strecht. The dependent coordinates are achieved solving the non-linear constrain equations with Newton-Rhapson method. The method of cubic splines is very continuous, therefore when it is needed to design a trajectory in which there are at least 2 movements clearly differents, it is required to make it in 2 steps and join them later. That would be the case when any of the motors would keep stopped during the first movement, and another different motor would remain stopped during the second movement (and so on). Once that movement is obtained, they are calculated, also with numerical differenciation formulas, the independent velocities and accelerations. This process is analogous to the one before explained, reminding condition that acceleration when t=0 and t=end are 0. Dependent velocities and accelerations are calculated solving related derivatives of constrain equations. In a third approval of the model it is checked, again, consistence of interpolated movement. Inverse dynamics calculates, for a defined movement –knowing position, velocity and acceleration in each instant of time-, and knowing external forces that act (f.e. weights); which forces must be applied in motors (where there is control) in order to obtain requested movement. In inverse dynamics, each instant of time is independent of the others and it has a position, a velocity, an acceleration and known forces. In this specific case, it is intended to apply, at the moment, only forces due to the weight, though forces of another nature could have been added if it would have been preferred. The positions, velocities and accelerations, come from kinematic calculation. The inertial effect of forces taken into account (weight) is calculated. As final result of the inverse dynamic analysis, the are obtained torques that the 4 motors must apply to repeat requested movement with the forces that were acting. The fourth approval of the model consists on confirming that the achieved movement due to the use of the torques obtained in the inverse dynamics, are in accordance with movements from kinematic analysis (theoretical movement). For this, it is necessary to work with direct dynamics. Direct dynamic is in charge of calculating the movements of robot that results from applying torques at motors and forces at the robot. Therefore, the resultant real movement, as there was no change in any condition of the ones obtained at the inverse dynamics (motor torques and inertial forces due to weight of elements) must be the same than theoretical movement. When these results are achieved, it is considered that robot is ready to work. When a machining external force is introduced and it was not taken into account before during the inverse dynamics, and torques at motors considered are the ones of the inverse dynamics, the real movement obtained is not the same than the theoretical movement. Closed loop control is based on comparing real movement with expected movement and introducing required corrrections to minimize or cancel differences. They are applied gains in the way of corrections for position and/or tolerance to remove those differences. Position error is evaluated as the difference, in each point, between theoretical movemment (calculated in the kinematic analysis) and the real movement achieved for each machining force and for an specific gain. Finally, the position error obtained for each machining force and gains are mapped, giving a chart with the best accuracy that the robot can give for each operation that has been requested and which conditions must be provided.